Loading…

Catalytic Mechanism of Cytochrome P450 2D6 for 4-Hydroxylation of Aripiprazole: A QM/MM Study

Drug metabolism is an important issue in drug discovery. Understanding how a drug is metabolized in the body will provide helpful information for lead optimization. Cytochrome P450 2D6 (CYP2D6) is a key enzyme for drug metabolism and responsible for the metabolism of about one third marketed drugs....

Full description

Saved in:
Bibliographic Details
Published in:Chinese journal of chemistry 2013-09, Vol.31 (9), p.1219-1227
Main Authors: Shi, Rongwei, Li, Weihua, Liu, Guixia, Tang, Yun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Drug metabolism is an important issue in drug discovery. Understanding how a drug is metabolized in the body will provide helpful information for lead optimization. Cytochrome P450 2D6 (CYP2D6) is a key enzyme for drug metabolism and responsible for the metabolism of about one third marketed drugs. Aripiprazole is an atypical an- tipsychotic and metabolized by CYP2D6 to its hydroxylated form. In this study, a series of computational methods were performed to understand how CYP2D6 accomplishes the 4-hydroxylation of aripiprazole. Molecular docking and molecular dynamics simulations were first performed to prepare the initial conformations for QM/MM calcula- tions. The results revealed two possible conformations for the drug-CYP2D6 complex. The ONIOM method for QM/MM calculations was then carried out to show detailed reaction pathways for the CYP2D6-catalyzed aripipra- zole hydroxylation reaction, which demonstrated that the dominant reactive channel was electrophilic and involved an initial attack on the n-system of the dichlorophenyl group of aripiprazole to produce cation δ-complex. Further- more, the product complex for each conformation was thermodynamically stable, which is in good agreement with previous reports.
ISSN:1001-604X
1614-7065
DOI:10.1002/cjoc.201300427