Loading…
On the General Position Subset Selection Problem
Let $f(n,\ell)$ be the maximum integer such that every set of $n$ points in the plane with at most $\ell$ collinear contains a subset of $f(n,\ell)$ points with no three collinear. First we prove that if $\ell\leqslant O(\sqrt{n})$, then $f(n,\ell)\geqslant\Omega(\sqrt{n/\ln\ell})$. Second we prove...
Saved in:
Published in: | SIAM journal on discrete mathematics 2013-01, Vol.27 (4), p.1727-1733 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let $f(n,\ell)$ be the maximum integer such that every set of $n$ points in the plane with at most $\ell$ collinear contains a subset of $f(n,\ell)$ points with no three collinear. First we prove that if $\ell\leqslant O(\sqrt{n})$, then $f(n,\ell)\geqslant\Omega(\sqrt{n/\ln\ell})$. Second we prove that if $\ell\leqslant O(n^{(1-\epsilon)/2})$, then $f(n,\ell)\geqslant\Omega(\sqrt{n\log_\ell n})$, which implies all previously known lower bounds on $f(n,\ell)$ and improves them when $\ell$ is not fixed. A more general problem is to consider subsets with at most $k$ collinear points in a point set with at most $\ell$ collinear. We also prove analogous results in this setting. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0895-4801 1095-7146 |
DOI: | 10.1137/120897493 |