Loading…

Improved micropropagation of Gypsophila paniculata with bioreactor and factors affecting ex vitro rooting in microponic system

Studies on the mass production of high-quality plantlets in Gypsophila paniculata L. using a bioreactor and microponic system (a hydroponic system in which micropropagation shoots are planted) indicated that both aeration treatments, in which bioreactors were aerated from the top of explants by spar...

Full description

Saved in:
Bibliographic Details
Published in:In vitro cellular & developmental biology. Plant 2013-02, Vol.49 (1), p.70-78
Main Authors: Wang, Shou Ming, Piao, Xuan Chun, Park, So Young, Lian, Mei Lan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Studies on the mass production of high-quality plantlets in Gypsophila paniculata L. using a bioreactor and microponic system (a hydroponic system in which micropropagation shoots are planted) indicated that both aeration treatments, in which bioreactors were aerated from the top of explants by sparger (AS) and by tub (AT), were more effective than unaerated treatment for shoot proliferation and growth, and the maximum shoots (15.7 shoots per explant) with low hyperhydricity rate (2.9%) were found in the AS group. The ex vitro culture was more efficient for rooting when compared to the in vitro culture; the better shoot and root growth was obtained in the ex vitro culture, with rooting rate reaching 100% after 20 d of culture, but only 65% of in vitro shoots rooted; all stomata of ex vitro shoots closed, and their length was more than their width, but the stomata in in vitro shoots were all opened, the length close to the width. Furthermore, the stomata numbers were less in ex vitro (67.8) than in vitro (267.2). The survival rate of ex vitro plants reached 83.3% when plantlets derived in vitro and ex vitro were transferred to pots, while only 23.3% of in vitro plantlets survived. During ex vitro rooting with the microponic system, foam as the supporter material, 90 μmol m⁻² s⁻¹ of light, and 80 shoots of planting density were favorable for shoot and root growth. The combination of bioreactor and microponic systems is an efficient way to produce high-quality plantlets of G. paniculata. Their application can reduce costs during large-scale industrial production.
ISSN:1054-5476
1475-2689
DOI:10.1007/s11627-012-9464-x