Loading…
A two-parameter estimator in the negative binomial regression model
In this article, a two-parameter estimator is proposed to combat multicollinearity in the negative binomial regression model. The proposed two-parameter estimator is a general estimator which includes the maximum likelihood (ML) estimator, the ridge estimator (RE) and the Liu estimator as special ca...
Saved in:
Published in: | Journal of statistical computation and simulation 2014-01, Vol.84 (1), p.124-134 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, a two-parameter estimator is proposed to combat multicollinearity in the negative binomial regression model. The proposed two-parameter estimator is a general estimator which includes the maximum likelihood (ML) estimator, the ridge estimator (RE) and the Liu estimator as special cases. Some properties on the asymptotic mean-squared error (MSE) are derived and necessary and sufficient conditions for the superiority of the two-parameter estimator over the ML estimator and sufficient conditions for the superiority of the two-parameter estimator over the RE and the Liu estimator in the asymptotic mean-squared error (MSE) matrix sense are obtained. Furthermore, several methods and three rules for choosing appropriate shrinkage parameters are proposed. Finally, a Monte Carlo simulation study is given to illustrate some of the theoretical results. |
---|---|
ISSN: | 0094-9655 1563-5163 |
DOI: | 10.1080/00949655.2012.696648 |