Loading…
Localization Theorems for Nonlinear Eigenvalue Problems
Let $T : \Omega \rightarrow \mathbb{C}^{n \times n}$ be a matrix-valued function that is analytic on some simply connected domain $\Omega \subset \mathbb{C}$. A point $\lambda \in \Omega$ is an eigenvalue if the matrix $T(\lambda)$ is singular. In this paper, we describe new localization results for...
Saved in:
Published in: | SIAM journal on matrix analysis and applications 2013-01, Vol.34 (4), p.1728-1749 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let $T : \Omega \rightarrow \mathbb{C}^{n \times n}$ be a matrix-valued function that is analytic on some simply connected domain $\Omega \subset \mathbb{C}$. A point $\lambda \in \Omega$ is an eigenvalue if the matrix $T(\lambda)$ is singular. In this paper, we describe new localization results for nonlinear eigenvalue problems that generalize Gershgorin's theorem, pseudospectral inclusion theorems, and the Bauer--Fike theorem. We use our results to analyze three nonlinear eigenvalue problems: an example from delay differential equations, a problem due to Hadeler, and a quantum resonance computation. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0895-4798 1095-7162 |
DOI: | 10.1137/130913651 |