Loading…

Localization Theorems for Nonlinear Eigenvalue Problems

Let $T : \Omega \rightarrow \mathbb{C}^{n \times n}$ be a matrix-valued function that is analytic on some simply connected domain $\Omega \subset \mathbb{C}$. A point $\lambda \in \Omega$ is an eigenvalue if the matrix $T(\lambda)$ is singular. In this paper, we describe new localization results for...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on matrix analysis and applications 2013-01, Vol.34 (4), p.1728-1749
Main Authors: Bindel, David, Hood, Amanda
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-7898a4782ce298c8239457ad7a161cadd71abde276dca3c3f239a6f910f8002c3
cites cdi_FETCH-LOGICAL-c292t-7898a4782ce298c8239457ad7a161cadd71abde276dca3c3f239a6f910f8002c3
container_end_page 1749
container_issue 4
container_start_page 1728
container_title SIAM journal on matrix analysis and applications
container_volume 34
creator Bindel, David
Hood, Amanda
description Let $T : \Omega \rightarrow \mathbb{C}^{n \times n}$ be a matrix-valued function that is analytic on some simply connected domain $\Omega \subset \mathbb{C}$. A point $\lambda \in \Omega$ is an eigenvalue if the matrix $T(\lambda)$ is singular. In this paper, we describe new localization results for nonlinear eigenvalue problems that generalize Gershgorin's theorem, pseudospectral inclusion theorems, and the Bauer--Fike theorem. We use our results to analyze three nonlinear eigenvalue problems: an example from delay differential equations, a problem due to Hadeler, and a quantum resonance computation. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/130913651
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1469413761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3160844081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-7898a4782ce298c8239457ad7a161cadd71abde276dca3c3f239a6f910f8002c3</originalsourceid><addsrcrecordid>eNo9kD1PwzAYhC0EEqEw8A8iMTEE_NqOP0ZUlYJUAUOZrbeODanSuNgJEvx6goqY7oZHd7oj5BLoDQBXt8CpAS5rOCIFUFNXCiQ7JgXVkxfK6FNylvOWUpDCQEHUKjrs2m8c2tiX63cfk9_lMsRUPsW-a3uPqVy0b77_xG705UuKm24izslJwC77iz-dkdf7xXr-UK2el4_zu1XlmGFDpbTRKJRmzjOjnWbciFphoxAkOGwaBbhpPFOyccgdDxOAMhigQVPKHJ-Rq0PuPsWP0efBbuOY-qnSgpBGTJslTNT1gXIp5px8sPvU7jB9WaD29xf7_wv_AdoxU4I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1469413761</pqid></control><display><type>article</type><title>Localization Theorems for Nonlinear Eigenvalue Problems</title><source>SIAM Journals Online</source><source>ABI/INFORM Global</source><creator>Bindel, David ; Hood, Amanda</creator><creatorcontrib>Bindel, David ; Hood, Amanda</creatorcontrib><description>Let $T : \Omega \rightarrow \mathbb{C}^{n \times n}$ be a matrix-valued function that is analytic on some simply connected domain $\Omega \subset \mathbb{C}$. A point $\lambda \in \Omega$ is an eigenvalue if the matrix $T(\lambda)$ is singular. In this paper, we describe new localization results for nonlinear eigenvalue problems that generalize Gershgorin's theorem, pseudospectral inclusion theorems, and the Bauer--Fike theorem. We use our results to analyze three nonlinear eigenvalue problems: an example from delay differential equations, a problem due to Hadeler, and a quantum resonance computation. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0895-4798</identifier><identifier>EISSN: 1095-7162</identifier><identifier>DOI: 10.1137/130913651</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Eigenvalues ; Localization ; Matrix ; Theorems</subject><ispartof>SIAM journal on matrix analysis and applications, 2013-01, Vol.34 (4), p.1728-1749</ispartof><rights>2013, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-7898a4782ce298c8239457ad7a161cadd71abde276dca3c3f239a6f910f8002c3</citedby><cites>FETCH-LOGICAL-c292t-7898a4782ce298c8239457ad7a161cadd71abde276dca3c3f239a6f910f8002c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1469413761?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,3171,11668,27903,27904,36039,44342</link.rule.ids></links><search><creatorcontrib>Bindel, David</creatorcontrib><creatorcontrib>Hood, Amanda</creatorcontrib><title>Localization Theorems for Nonlinear Eigenvalue Problems</title><title>SIAM journal on matrix analysis and applications</title><description>Let $T : \Omega \rightarrow \mathbb{C}^{n \times n}$ be a matrix-valued function that is analytic on some simply connected domain $\Omega \subset \mathbb{C}$. A point $\lambda \in \Omega$ is an eigenvalue if the matrix $T(\lambda)$ is singular. In this paper, we describe new localization results for nonlinear eigenvalue problems that generalize Gershgorin's theorem, pseudospectral inclusion theorems, and the Bauer--Fike theorem. We use our results to analyze three nonlinear eigenvalue problems: an example from delay differential equations, a problem due to Hadeler, and a quantum resonance computation. [PUBLICATION ABSTRACT]</description><subject>Applied mathematics</subject><subject>Eigenvalues</subject><subject>Localization</subject><subject>Matrix</subject><subject>Theorems</subject><issn>0895-4798</issn><issn>1095-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo9kD1PwzAYhC0EEqEw8A8iMTEE_NqOP0ZUlYJUAUOZrbeODanSuNgJEvx6goqY7oZHd7oj5BLoDQBXt8CpAS5rOCIFUFNXCiQ7JgXVkxfK6FNylvOWUpDCQEHUKjrs2m8c2tiX63cfk9_lMsRUPsW-a3uPqVy0b77_xG705UuKm24izslJwC77iz-dkdf7xXr-UK2el4_zu1XlmGFDpbTRKJRmzjOjnWbciFphoxAkOGwaBbhpPFOyccgdDxOAMhigQVPKHJ-Rq0PuPsWP0efBbuOY-qnSgpBGTJslTNT1gXIp5px8sPvU7jB9WaD29xf7_wv_AdoxU4I</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Bindel, David</creator><creator>Hood, Amanda</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20130101</creationdate><title>Localization Theorems for Nonlinear Eigenvalue Problems</title><author>Bindel, David ; Hood, Amanda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-7898a4782ce298c8239457ad7a161cadd71abde276dca3c3f239a6f910f8002c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied mathematics</topic><topic>Eigenvalues</topic><topic>Localization</topic><topic>Matrix</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bindel, David</creatorcontrib><creatorcontrib>Hood, Amanda</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on matrix analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bindel, David</au><au>Hood, Amanda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localization Theorems for Nonlinear Eigenvalue Problems</atitle><jtitle>SIAM journal on matrix analysis and applications</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>34</volume><issue>4</issue><spage>1728</spage><epage>1749</epage><pages>1728-1749</pages><issn>0895-4798</issn><eissn>1095-7162</eissn><abstract>Let $T : \Omega \rightarrow \mathbb{C}^{n \times n}$ be a matrix-valued function that is analytic on some simply connected domain $\Omega \subset \mathbb{C}$. A point $\lambda \in \Omega$ is an eigenvalue if the matrix $T(\lambda)$ is singular. In this paper, we describe new localization results for nonlinear eigenvalue problems that generalize Gershgorin's theorem, pseudospectral inclusion theorems, and the Bauer--Fike theorem. We use our results to analyze three nonlinear eigenvalue problems: an example from delay differential equations, a problem due to Hadeler, and a quantum resonance computation. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/130913651</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0895-4798
ispartof SIAM journal on matrix analysis and applications, 2013-01, Vol.34 (4), p.1728-1749
issn 0895-4798
1095-7162
language eng
recordid cdi_proquest_journals_1469413761
source SIAM Journals Online; ABI/INFORM Global
subjects Applied mathematics
Eigenvalues
Localization
Matrix
Theorems
title Localization Theorems for Nonlinear Eigenvalue Problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localization%20Theorems%20for%20Nonlinear%20Eigenvalue%20Problems&rft.jtitle=SIAM%20journal%20on%20matrix%20analysis%20and%20applications&rft.au=Bindel,%20David&rft.date=2013-01-01&rft.volume=34&rft.issue=4&rft.spage=1728&rft.epage=1749&rft.pages=1728-1749&rft.issn=0895-4798&rft.eissn=1095-7162&rft_id=info:doi/10.1137/130913651&rft_dat=%3Cproquest_cross%3E3160844081%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-7898a4782ce298c8239457ad7a161cadd71abde276dca3c3f239a6f910f8002c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1469413761&rft_id=info:pmid/&rfr_iscdi=true