Loading…

Piano tones evoke stronger magnetic fields than pure tones or noise, both in musicians and non-musicians

Regarding the net firing rate of the auditory nerve, the strongest response is to be expected when the input energy is spread as evenly as possible over the cochlea rather than being concentrated at a particular location. In some respects, this effect seems to be preserved up to the auditory cortex,...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Fla.), 2006-04, Vol.30 (3), p.927-937
Main Authors: Lütkenhöner, Bernd, Seither-Preisler, Annemarie, Seither, Stefan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Regarding the net firing rate of the auditory nerve, the strongest response is to be expected when the input energy is spread as evenly as possible over the cochlea rather than being concentrated at a particular location. In some respects, this effect seems to be preserved up to the auditory cortex, but conflicting results have been reported as well. Here, we compared the auditory evoked fields (AEF) elicited by a pure tone and two sounds causing a more wide-spread cochlear activation: a piano tone as a representative of a complex tone, and bandpass noise. The stimuli had the same intensity (60 dB above threshold), and the center frequency of the noise corresponded to the fundamental frequency of the tones (1047 Hz, two octaves above middle C). Among the 26 subjects were 11 musicians and 11 persons who never played an instrument. At a latency of about 50 ms (wave P50m), the piano tone and the noise yielded stronger responses than the pure tone, in accordance with the concepts about the auditory periphery. By contrast, around 100 ms (wave N100m), the noise clearly elicited the smallest response, whereas the strongest response was elicited again by the piano tone. Musicians and non-musicians did not significantly differ concerning the responses to pure tones and piano tones. Thus, previous claims that an enhanced response to piano tones indicates use-dependent reorganization in musicians are not supported by the present data.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2005.10.034