Loading…

Catalytic Quantum Error Correction

We develop the theory of entanglement-assisted quantum error-correcting (EAQEC) codes, a generalization of the stabilizer formalism to the setting in which the sender and receiver have access to preshared entanglement. Conventional stabilizer codes are equivalent to self-orthogonal symplectic codes....

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2014-06, Vol.60 (6), p.3073-3089
Main Authors: Brun, Todd A., Devetak, Igor, Min-Hsiu Hsieh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We develop the theory of entanglement-assisted quantum error-correcting (EAQEC) codes, a generalization of the stabilizer formalism to the setting in which the sender and receiver have access to preshared entanglement. Conventional stabilizer codes are equivalent to self-orthogonal symplectic codes. In contrast, EAQEC codes do not require self-orthogonality, which greatly simplifies their construction. We show how any classical binary or quaternary block code can be made into an EAQEC code. We provide a table of best known EAQEC codes with code length up to 10. With the self-orthogonality constraint removed, we see that the distance of an EAQEC code can be better than any standard quantum error-correcting code with the same fixed net yield. In a quantum computation setting, EAQEC codes give rise to catalytic quantum codes, which assume a subset of the qubits are noiseless. We also give an alternative construction of EAQEC codes by making classical entanglement-assisted codes coherent.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2014.2313559