Loading…
Norm-controlled inversion in smooth Banach algebras, II
We show that smoothness implies norm‐controlled inversion: the smoothness of an element a in a Banach algebra with a one‐parameter automorphism group is preserved under inversion, and the norm of the inverse a−1 is controlled by the smoothness of a and by spectral data. In our context smooth subalge...
Saved in:
Published in: | Mathematische Nachrichten 2014-06, Vol.287 (8-9), p.917-937 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show that smoothness implies norm‐controlled inversion: the smoothness of an element a in a Banach algebra with a one‐parameter automorphism group is preserved under inversion, and the norm of the inverse a−1 is controlled by the smoothness of a and by spectral data. In our context smooth subalgebras are obtained with the classical constructions of approximation theory and resemble spaces of differentiable functions, Besov spaces or Bessel potential spaces. To treat ultra‐smoothness, we resort to Dales‐Davie algebras. Furthermore, based on Baskakov's work, we derive explicit norm control estimates for infinite matrices with polynomial off‐diagonal decay. This is a quantitative version of Jaffard's theorem. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.201200312 |