Loading…

Mineralizable Nitrogen of Organic Wastes and Soil Chemical Changes under Laboratory Conditions

This study looks at the ability of organic wastes from different sources to efficiently promote chemical attributes and enhance nitrogen (N) concentrations in an Oxisol Ustox with a sandy texture. This experiment was performed in a randomized design using wastes from pulp mill sludge, petrochemical...

Full description

Saved in:
Bibliographic Details
Published in:Communications in Soil Science and Plant Analysis 2014-01, Vol.45 (15), p.1981-1994
Main Authors: Boechat, Cácio Luiz, Ribeiro, Marcos de Oliveira, Santos, Jorge Antonio Gonzaga, Maria de Aguiar Accioly, Adriana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study looks at the ability of organic wastes from different sources to efficiently promote chemical attributes and enhance nitrogen (N) concentrations in an Oxisol Ustox with a sandy texture. This experiment was performed in a randomized design using wastes from pulp mill sludge, petrochemical complex, sewage treatment plant, dairy factory sewage treatment plant, and pulp fruit industry, on 10 different days. Results showed that addition of the wastes to the soil amended their chemical attributes. The different characteristics of the organic wastes seem to have influenced the N mineralization rates during the 112 days. There was a close relationship between the N mineralization and organic waste C/N ratio: blank soil (SP) (Nma = 3.17) < Treated pulp mill sludge (PMS) (Nma = 30.49, C/N 63.6:1) < Organic compost from the fruit pulp industry (FPW) (Nma = 67.6, C/N 11.9:1) < Treated urban sewage sludge (USS) (Nma = 76.22, C/N 7.2:1) = Petrochemical complex sludge (PS) (Nma = 84.0, C/N 7.7:1) < Treated dairy industry sewage sludge (DSS) (Nma = 102.17, C/N 8.4:1).
ISSN:0010-3624
1532-2416
1532-4133
DOI:10.1080/00103624.2014.919309