Loading…
Nonconforming Discretization of the Electric-Field Integral Equation for Closed Perfectly Conducting Objects
Galerkin implementations of the method of moments (MoM) of the electric-field integral equation (EFIE) have been traditionally carried out with divergence-conforming sets. The normal-continuity constraint across edges gives rise to cumbersome implementations around junctions for composite objects an...
Saved in:
Published in: | IEEE transactions on antennas and propagation 2014-08, Vol.62 (8), p.4171-4186 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Galerkin implementations of the method of moments (MoM) of the electric-field integral equation (EFIE) have been traditionally carried out with divergence-conforming sets. The normal-continuity constraint across edges gives rise to cumbersome implementations around junctions for composite objects and to less accurate implementations of the combined field integral equation (CFIE) for closed sharp-edged conductors. We present a new MoM-discretization of the EFIE for closed conductors based on the nonconforming monopolar-RWG set, with no continuity across edges. This new approach, which we call "even-surface odd-volumetric monopolar-RWG discretization of the EFIE", makes use of a hierarchical rearrangement of the monopolar-RWG current space in terms of the divergence-conforming RWG set and the new nonconforming "odd monopolar-RWG" set. In the matrix element generation, we carry out a volumetric testing over a set of tetrahedral elements attached to the surface triangulation inside the object in order to make the hyper-singular Kernel contributions numerically manageable. We show for several closed sharp-edged objects that the proposed EFIE-implementation shows improved accuracy with respect to the RWG-discretization and the recently proposed volumetric monopolar-RWG discretization of the EFIE. Also, the new formulation becomes free from the electric-field low-frequency breakdown after rearranging the monopolar-RWG basis functions in terms of the solenoidal, Loop, and the nonsolenoidal, Star and "odd monopolar-RWG", components. |
---|---|
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/TAP.2014.2325954 |