Loading…
Breaking the Curse of Dimensionality Using Decompositions of Incomplete Tensors: Tensor-based scientific computing in big data analysis
Higher-order tensors and their decompositions are abundantly present in domains such as signal processing (e.g., higher-order statistics [1] and sensor array processing [2]), scientific computing (e.g., discretized multivariate functions [3]?[6]), and quantum information theory (e.g., representation...
Saved in:
Published in: | IEEE signal processing magazine 2014-09, Vol.31 (5), p.71-79 |
---|---|
Main Authors: | , , , |
Format: | Magazinearticle |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Higher-order tensors and their decompositions are abundantly present in domains such as signal processing (e.g., higher-order statistics [1] and sensor array processing [2]), scientific computing (e.g., discretized multivariate functions [3]?[6]), and quantum information theory (e.g., representation of quantum many-body states [7]). In many applications, the possibly huge tensors can be approximated well by compact multilinear models or decompositions. Tensor decompositions are more versatile tools than the linear models resulting from traditional matrix approaches. Compared to matrices, tensors have at least one extra dimension. The number of elements in a tensor increases exponentially with the number of dimensions, and so do the computational and memory requirements. The exponential dependency (and the problems that are caused by it) is called the curse of dimensionality. The curse limits the order of the tensors that can be handled. Even for a modest order, tensor problems are often large scale. Large tensors can be handled, and the curse can be alleviated or even removed by using a decomposition that represents the tensor instead of using the tensor itself. However, most decomposition algorithms require full tensors, which renders these algorithms infeasible for many data sets. If a tensor can be represented by a decomposition, this hypothesized structure can be exploited by using compressed sensing (CS) methods working on incomplete tensors, i.e., tensors with only a few known elements. |
---|---|
ISSN: | 1053-5888 1558-0792 |
DOI: | 10.1109/MSP.2014.2329429 |