Loading…

MIP models for two-dimensional non-guillotine cutting problems with usable leftovers

In this study we deal with the two-dimensional non-guillotine cutting problem of how to cut a set of larger rectangular objects to a set of smaller rectangular items in exactly a demanded number of pieces. We are concerned with the special case of the problem in which the non-used material of the cu...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of the Operational Research Society 2014-11, Vol.65 (11), p.1649-1663
Main Authors: Andrade, Ricardo, Birgin, Ernesto G, Morabito, Reinaldo, Ronconi, DĂ©bora P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study we deal with the two-dimensional non-guillotine cutting problem of how to cut a set of larger rectangular objects to a set of smaller rectangular items in exactly a demanded number of pieces. We are concerned with the special case of the problem in which the non-used material of the cutting patterns (objects leftovers) may be used in the future, for example if it is large enough to fulfill future item demands. Therefore, the problem is seen as a two-dimensional non-guillotine cutting/packing problem with usable leftovers, also known in the literature as a two-dimensional residual bin-packing problem. We use multilevel mathematical programming models to represent the problem appropriately, which basically consists of cutting the ordered items using a set of objects of minimum cost, among all possible solutions of minimum cost, choosing one that maximizes the value of the usable leftovers, and, among them, selecting one that minimizes the number of usable leftovers. Because of special characteristics of these multilevel models, they can be reformulated as one-level mixed integer programming (MIP) models. Illustrative numerical examples are presented and analysed.
ISSN:0160-5682
1476-9360
DOI:10.1057/jors.2013.108