Loading…
Discovery of Association Rules from University Admission System Data
Association rules discovery is one of the vital data mining techniques. Currently there is an increasing interest in data mining and educational systems, making educational data mining (EDM) as a new growing research community. In this paper, we present a model for association rules discovery from K...
Saved in:
Published in: | International journal of modern education and computer science 2013-05, Vol.5 (4), p.1-7 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Association rules discovery is one of the vital data mining techniques. Currently there is an increasing interest in data mining and educational systems, making educational data mining (EDM) as a new growing research community. In this paper, we present a model for association rules discovery from King Abdulaziz University (KAU) admission system data. The main objective is to extract the rules and relations between admission system attributes for better analysis. The model utilizes an apriori algorithm for association rule mining. Detailed analysis and interpretation of the experimental results is presented with respect to admission office perspective. |
---|---|
ISSN: | 2075-0161 2075-017X |
DOI: | 10.5815/ijmecs.2013.04.01 |