Loading…
A Three-Factor Product Construction for Mutually Orthogonal Latin Squares
It is well known that mutually orthogonal latin squares, or MOLS, admit a (Kronecker) product construction. We show that, under mild conditions, “triple products” of MOLS can result in a gain of one square. In terms of transversal designs, the technique is to use a construction of Rolf Rees twice: o...
Saved in:
Published in: | Journal of combinatorial designs 2015-06, Vol.23 (6), p.229-232 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is well known that mutually orthogonal latin squares, or MOLS, admit a (Kronecker) product construction. We show that, under mild conditions, “triple products” of MOLS can result in a gain of one square. In terms of transversal designs, the technique is to use a construction of Rolf Rees twice: once to obtain a coarse resolution of the blocks after one product, and next to reorganize classes and resolve the blocks of the second product. As consequences, we report a few improvements to the MOLS table and obtain a slight strengthening of the famous theorem of MacNeish. |
---|---|
ISSN: | 1063-8539 1520-6610 |
DOI: | 10.1002/jcd.21393 |