Loading…

Factors controlling nitrate fluxes in groundwater in agricultural areas

The impact of agricultural chemicals on groundwater quality depends on the interactions of biogeochemical and hydrologic factors. To identify key processes affecting distribution of agricultural nitrate in groundwater, a parsimonious transport model was applied at 14 sites across the U.S. Simulated...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research 2012-06, Vol.48 (6), p.n/a
Main Authors: Liao, Lixia, Green, Christopher T., Bekins, Barbara A., Böhlke, J. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The impact of agricultural chemicals on groundwater quality depends on the interactions of biogeochemical and hydrologic factors. To identify key processes affecting distribution of agricultural nitrate in groundwater, a parsimonious transport model was applied at 14 sites across the U.S. Simulated vertical profiles of NO3−, N2 from denitrification, O2, Cl−, and environmental tracers of groundwater age were matched to observations by adjusting the parameters for recharge rate, unsaturated zone travel time, fractions of N and Cl− inputs leached to groundwater, O2 reduction rate, O2 threshold for denitrification, and denitrification rate. Model results revealed important interactions among biogeochemical and physical factors. Chloride fluxes decreased between the land surface and water table possibly because of Cl− exports in harvested crops (averaging 22% of land‐surface Cl− inputs). Modeled zero‐order rates of O2 reduction and denitrification were correlated. Denitrification rates at depth commonly exceeded overlying O2 reduction rates, likely because shallow geologic sources of reactive electron donors had been depleted. Projections indicated continued downward migration of NO3− fronts at sites with denitrification rates
ISSN:0043-1397
1944-7973
DOI:10.1029/2011WR011008