Loading…
Unconditionally Secure, Universally Composable Privacy Preserving Linear Algebra
Linear algebra operations on private distributed data are frequently required in several practical scenarios (e.g., statistical analysis and privacy preserving databases). We present universally composable two-party protocols to compute inner products, determinants, eigenvalues, and eigenvectors. Th...
Saved in:
Published in: | IEEE transactions on information forensics and security 2016-01, Vol.11 (1), p.59-73 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Linear algebra operations on private distributed data are frequently required in several practical scenarios (e.g., statistical analysis and privacy preserving databases). We present universally composable two-party protocols to compute inner products, determinants, eigenvalues, and eigenvectors. These protocols are built for a two-party scenario where the inputs are provided by mutually distrustful parties. After execution, the protocols yield the results of the intended operation while preserving the privacy of their inputs. Universal composability is obtained in the trusted initializer model, ensuring information theoretical security under arbitrary protocol composition in complex environments. Furthermore, our protocols are computationally efficient since they only require field multiplication and addition operations. |
---|---|
ISSN: | 1556-6013 1556-6021 |
DOI: | 10.1109/TIFS.2015.2476783 |