Loading…

A variant of K nearest neighbor quantile regression

Compared with local polynomial quantile regression, K nearest neighbor quantile regression (KNNQR) has many advantages, such as not assuming smoothness of functions. The paper summarizes the research of KNNQR and has carried out further research on the selection of k, algorithm and Monte Carlo simul...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied statistics 2016-02, Vol.43 (3), p.526-537
Main Authors: Ma, Xuejun, He, Xiaoqun, Shi, Xiaokang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Compared with local polynomial quantile regression, K nearest neighbor quantile regression (KNNQR) has many advantages, such as not assuming smoothness of functions. The paper summarizes the research of KNNQR and has carried out further research on the selection of k, algorithm and Monte Carlo simulations. Additionally, simulated functions are Blocks, Bumps, HeaviSine and Doppler, which stand for jumping, volatility, mutagenicity slope and high frequency function. When function to be estimated has some jump points or catastrophe points, KNNQR is superior to local linear quantile regression in the sense of the mean squared error and mean absolute error criteria. To be mentioned, even high frequency, the superiority of KNNQR could be observed. A real data is analyzed as an illustration.
ISSN:0266-4763
1360-0532
DOI:10.1080/02664763.2015.1070807