Loading…

Biomolecule-Assisted Route to Prepare Titania Mesoporous Hollow Structures

Amino acids, as a particularly important type of biomolecules, have been used as multifunctional templates to intelligently construct mesoporous TiO2 hollow structures through a simple solvothermal reaction. The structure‐directing behaviors of various amino acids were systematically investigated, a...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry : a European journal 2011-10, Vol.17 (41), p.11535-11541
Main Authors: Ding, Shangjun, Wang, Yaoming, Hong, Zhanglian, Lü, Xujie, Wan, Dongyun, Huang, Fuqiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4104-79aae6de9d174629c32af009e1da6415803955163415f6d1360634fe782735af3
cites cdi_FETCH-LOGICAL-c4104-79aae6de9d174629c32af009e1da6415803955163415f6d1360634fe782735af3
container_end_page 11541
container_issue 41
container_start_page 11535
container_title Chemistry : a European journal
container_volume 17
creator Ding, Shangjun
Wang, Yaoming
Hong, Zhanglian
Lü, Xujie
Wan, Dongyun
Huang, Fuqiang
description Amino acids, as a particularly important type of biomolecules, have been used as multifunctional templates to intelligently construct mesoporous TiO2 hollow structures through a simple solvothermal reaction. The structure‐directing behaviors of various amino acids were systematically investigated, and it was found that these biomolecules possess the general capability to assist mesoporous TiO2 hollow‐sphere formation. At the same time, the nanostructures of the obtained TiO2 are highly dependent on the isoelectric points (pI) of amino acids. Their molecular‐structure variations can lead to pI differences and significantly influence the final TiO2 morphologies. Higher‐pI amino acids (e.g., L‐lysine and L‐arginine) have better structure‐directing abilities to generate nanosheet‐assembled hollow spheres and yolk/shell structures. The specific morphologies and mesopore size of these novel hollow structures can also be tuned by adjusting the titanium precursor concentration. Heat treatment in air and vacuum was further conducted to transform the as‐prepared structures to porous nanoparticle‐assembled hollow TiO2 and TiO2/carbon nanocomposites, which may be potentially applied in the fields of photocatalysts, dye‐sensitized solar cells, and Li batteries. This study provides some enlightenment on the design of novel templates by taking advantage of biomolecules. Magnum pI: Amino acids exhibit multifunctional template effects and possess the general capability to construct mesoporous TiO2 hollow spheres through solvothermal reactions. The obtained nanostructures of TiO2 are highly dependent on the isoelectric points (pI) of amino acids. Molecular‐structure variations lead to pI differences and significantly influence the final TiO2 morphologies (see figure).
doi_str_mv 10.1002/chem.201101314
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1766615053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3957789131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4104-79aae6de9d174629c32af009e1da6415803955163415f6d1360634fe782735af3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EouWxZYkisU7x2LGdLEvVUlB5iIdgZ5lkIlKSOtiJgL8nVaBix2pmce6d0SHkCOgIKGWn6StWI0YBKHCItsgQBIOQKym2yZAmkQql4MmA7Hm_pJQmkvNdMmAQx4wpNiSXZ4WtbIlpW2I49r7wDWbBnW0bDBob3DqsjcPgoWjMqjDBFXpbW2dbH8xtWdqP4L5xbdq0Dv0B2clN6fHwZ-6Tx9n0YTIPFzfnF5PxIkwjoFGoEmNQZphkoCLJkpQzk3efIWRGRiBiyhMhQPJuz2UGXNJuz1HFTHFhcr5PTvre2tn3Fn2jl7Z1q-6kBiWlBEEF76hRT6XOeu8w17UrKuO-NFC9VqfX6vRGXRc4_qltXyrMNvivqw5IeuCjKPHrnzo9mU-v_paHfXbt93OTNe5NS8WV0E_X55rN4sUzu5V6wr8BCR2IOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766615053</pqid></control><display><type>article</type><title>Biomolecule-Assisted Route to Prepare Titania Mesoporous Hollow Structures</title><source>Wiley</source><creator>Ding, Shangjun ; Wang, Yaoming ; Hong, Zhanglian ; Lü, Xujie ; Wan, Dongyun ; Huang, Fuqiang</creator><creatorcontrib>Ding, Shangjun ; Wang, Yaoming ; Hong, Zhanglian ; Lü, Xujie ; Wan, Dongyun ; Huang, Fuqiang</creatorcontrib><description>Amino acids, as a particularly important type of biomolecules, have been used as multifunctional templates to intelligently construct mesoporous TiO2 hollow structures through a simple solvothermal reaction. The structure‐directing behaviors of various amino acids were systematically investigated, and it was found that these biomolecules possess the general capability to assist mesoporous TiO2 hollow‐sphere formation. At the same time, the nanostructures of the obtained TiO2 are highly dependent on the isoelectric points (pI) of amino acids. Their molecular‐structure variations can lead to pI differences and significantly influence the final TiO2 morphologies. Higher‐pI amino acids (e.g., L‐lysine and L‐arginine) have better structure‐directing abilities to generate nanosheet‐assembled hollow spheres and yolk/shell structures. The specific morphologies and mesopore size of these novel hollow structures can also be tuned by adjusting the titanium precursor concentration. Heat treatment in air and vacuum was further conducted to transform the as‐prepared structures to porous nanoparticle‐assembled hollow TiO2 and TiO2/carbon nanocomposites, which may be potentially applied in the fields of photocatalysts, dye‐sensitized solar cells, and Li batteries. This study provides some enlightenment on the design of novel templates by taking advantage of biomolecules. Magnum pI: Amino acids exhibit multifunctional template effects and possess the general capability to construct mesoporous TiO2 hollow spheres through solvothermal reactions. The obtained nanostructures of TiO2 are highly dependent on the isoelectric points (pI) of amino acids. Molecular‐structure variations lead to pI differences and significantly influence the final TiO2 morphologies (see figure).</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201101314</identifier><identifier>PMID: 21882272</identifier><identifier>CODEN: CEUJED</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Amino acids ; Amino Acids - chemistry ; Arginine - chemistry ; Catalysis ; Chemistry ; Coloring Agents - chemistry ; isoelectric points ; Lysine - chemistry ; mesoporous materials ; Models, Molecular ; Molecular Structure ; nanostructures ; Nanostructures - chemistry ; Photochemistry ; Porosity ; Solar Energy ; Temperature ; titanium ; Titanium - chemistry</subject><ispartof>Chemistry : a European journal, 2011-10, Vol.17 (41), p.11535-11541</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4104-79aae6de9d174629c32af009e1da6415803955163415f6d1360634fe782735af3</citedby><cites>FETCH-LOGICAL-c4104-79aae6de9d174629c32af009e1da6415803955163415f6d1360634fe782735af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21882272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Shangjun</creatorcontrib><creatorcontrib>Wang, Yaoming</creatorcontrib><creatorcontrib>Hong, Zhanglian</creatorcontrib><creatorcontrib>Lü, Xujie</creatorcontrib><creatorcontrib>Wan, Dongyun</creatorcontrib><creatorcontrib>Huang, Fuqiang</creatorcontrib><title>Biomolecule-Assisted Route to Prepare Titania Mesoporous Hollow Structures</title><title>Chemistry : a European journal</title><addtitle>Chem. Eur. J</addtitle><description>Amino acids, as a particularly important type of biomolecules, have been used as multifunctional templates to intelligently construct mesoporous TiO2 hollow structures through a simple solvothermal reaction. The structure‐directing behaviors of various amino acids were systematically investigated, and it was found that these biomolecules possess the general capability to assist mesoporous TiO2 hollow‐sphere formation. At the same time, the nanostructures of the obtained TiO2 are highly dependent on the isoelectric points (pI) of amino acids. Their molecular‐structure variations can lead to pI differences and significantly influence the final TiO2 morphologies. Higher‐pI amino acids (e.g., L‐lysine and L‐arginine) have better structure‐directing abilities to generate nanosheet‐assembled hollow spheres and yolk/shell structures. The specific morphologies and mesopore size of these novel hollow structures can also be tuned by adjusting the titanium precursor concentration. Heat treatment in air and vacuum was further conducted to transform the as‐prepared structures to porous nanoparticle‐assembled hollow TiO2 and TiO2/carbon nanocomposites, which may be potentially applied in the fields of photocatalysts, dye‐sensitized solar cells, and Li batteries. This study provides some enlightenment on the design of novel templates by taking advantage of biomolecules. Magnum pI: Amino acids exhibit multifunctional template effects and possess the general capability to construct mesoporous TiO2 hollow spheres through solvothermal reactions. The obtained nanostructures of TiO2 are highly dependent on the isoelectric points (pI) of amino acids. Molecular‐structure variations lead to pI differences and significantly influence the final TiO2 morphologies (see figure).</description><subject>Amino acids</subject><subject>Amino Acids - chemistry</subject><subject>Arginine - chemistry</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Coloring Agents - chemistry</subject><subject>isoelectric points</subject><subject>Lysine - chemistry</subject><subject>mesoporous materials</subject><subject>Models, Molecular</subject><subject>Molecular Structure</subject><subject>nanostructures</subject><subject>Nanostructures - chemistry</subject><subject>Photochemistry</subject><subject>Porosity</subject><subject>Solar Energy</subject><subject>Temperature</subject><subject>titanium</subject><subject>Titanium - chemistry</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EouWxZYkisU7x2LGdLEvVUlB5iIdgZ5lkIlKSOtiJgL8nVaBix2pmce6d0SHkCOgIKGWn6StWI0YBKHCItsgQBIOQKym2yZAmkQql4MmA7Hm_pJQmkvNdMmAQx4wpNiSXZ4WtbIlpW2I49r7wDWbBnW0bDBob3DqsjcPgoWjMqjDBFXpbW2dbH8xtWdqP4L5xbdq0Dv0B2clN6fHwZ-6Tx9n0YTIPFzfnF5PxIkwjoFGoEmNQZphkoCLJkpQzk3efIWRGRiBiyhMhQPJuz2UGXNJuz1HFTHFhcr5PTvre2tn3Fn2jl7Z1q-6kBiWlBEEF76hRT6XOeu8w17UrKuO-NFC9VqfX6vRGXRc4_qltXyrMNvivqw5IeuCjKPHrnzo9mU-v_paHfXbt93OTNe5NS8WV0E_X55rN4sUzu5V6wr8BCR2IOw</recordid><startdate>20111004</startdate><enddate>20111004</enddate><creator>Ding, Shangjun</creator><creator>Wang, Yaoming</creator><creator>Hong, Zhanglian</creator><creator>Lü, Xujie</creator><creator>Wan, Dongyun</creator><creator>Huang, Fuqiang</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope></search><sort><creationdate>20111004</creationdate><title>Biomolecule-Assisted Route to Prepare Titania Mesoporous Hollow Structures</title><author>Ding, Shangjun ; Wang, Yaoming ; Hong, Zhanglian ; Lü, Xujie ; Wan, Dongyun ; Huang, Fuqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4104-79aae6de9d174629c32af009e1da6415803955163415f6d1360634fe782735af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino acids</topic><topic>Amino Acids - chemistry</topic><topic>Arginine - chemistry</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Coloring Agents - chemistry</topic><topic>isoelectric points</topic><topic>Lysine - chemistry</topic><topic>mesoporous materials</topic><topic>Models, Molecular</topic><topic>Molecular Structure</topic><topic>nanostructures</topic><topic>Nanostructures - chemistry</topic><topic>Photochemistry</topic><topic>Porosity</topic><topic>Solar Energy</topic><topic>Temperature</topic><topic>titanium</topic><topic>Titanium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Shangjun</creatorcontrib><creatorcontrib>Wang, Yaoming</creatorcontrib><creatorcontrib>Hong, Zhanglian</creatorcontrib><creatorcontrib>Lü, Xujie</creatorcontrib><creatorcontrib>Wan, Dongyun</creatorcontrib><creatorcontrib>Huang, Fuqiang</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Shangjun</au><au>Wang, Yaoming</au><au>Hong, Zhanglian</au><au>Lü, Xujie</au><au>Wan, Dongyun</au><au>Huang, Fuqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomolecule-Assisted Route to Prepare Titania Mesoporous Hollow Structures</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chem. Eur. J</addtitle><date>2011-10-04</date><risdate>2011</risdate><volume>17</volume><issue>41</issue><spage>11535</spage><epage>11541</epage><pages>11535-11541</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><coden>CEUJED</coden><abstract>Amino acids, as a particularly important type of biomolecules, have been used as multifunctional templates to intelligently construct mesoporous TiO2 hollow structures through a simple solvothermal reaction. The structure‐directing behaviors of various amino acids were systematically investigated, and it was found that these biomolecules possess the general capability to assist mesoporous TiO2 hollow‐sphere formation. At the same time, the nanostructures of the obtained TiO2 are highly dependent on the isoelectric points (pI) of amino acids. Their molecular‐structure variations can lead to pI differences and significantly influence the final TiO2 morphologies. Higher‐pI amino acids (e.g., L‐lysine and L‐arginine) have better structure‐directing abilities to generate nanosheet‐assembled hollow spheres and yolk/shell structures. The specific morphologies and mesopore size of these novel hollow structures can also be tuned by adjusting the titanium precursor concentration. Heat treatment in air and vacuum was further conducted to transform the as‐prepared structures to porous nanoparticle‐assembled hollow TiO2 and TiO2/carbon nanocomposites, which may be potentially applied in the fields of photocatalysts, dye‐sensitized solar cells, and Li batteries. This study provides some enlightenment on the design of novel templates by taking advantage of biomolecules. Magnum pI: Amino acids exhibit multifunctional template effects and possess the general capability to construct mesoporous TiO2 hollow spheres through solvothermal reactions. The obtained nanostructures of TiO2 are highly dependent on the isoelectric points (pI) of amino acids. Molecular‐structure variations lead to pI differences and significantly influence the final TiO2 morphologies (see figure).</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>21882272</pmid><doi>10.1002/chem.201101314</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2011-10, Vol.17 (41), p.11535-11541
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_journals_1766615053
source Wiley
subjects Amino acids
Amino Acids - chemistry
Arginine - chemistry
Catalysis
Chemistry
Coloring Agents - chemistry
isoelectric points
Lysine - chemistry
mesoporous materials
Models, Molecular
Molecular Structure
nanostructures
Nanostructures - chemistry
Photochemistry
Porosity
Solar Energy
Temperature
titanium
Titanium - chemistry
title Biomolecule-Assisted Route to Prepare Titania Mesoporous Hollow Structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomolecule-Assisted%20Route%20to%20Prepare%20Titania%20Mesoporous%20Hollow%20Structures&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Ding,%20Shangjun&rft.date=2011-10-04&rft.volume=17&rft.issue=41&rft.spage=11535&rft.epage=11541&rft.pages=11535-11541&rft.issn=0947-6539&rft.eissn=1521-3765&rft.coden=CEUJED&rft_id=info:doi/10.1002/chem.201101314&rft_dat=%3Cproquest_cross%3E3957789131%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4104-79aae6de9d174629c32af009e1da6415803955163415f6d1360634fe782735af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1766615053&rft_id=info:pmid/21882272&rfr_iscdi=true