Loading…
An Adaptive Sampling Algorithm for Solving Markov Decision Processes
Based on recent results for multiarmed bandit problems, we propose an adaptive sampling algorithm that approximates the optimal value of a finite-horizon Markov decision process (MDP) with finite state and action spaces. The algorithm adaptively chooses which action to sample as the sampling process...
Saved in:
Published in: | Operations research 2005-01, Vol.53 (1), p.126-139 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Based on recent results for multiarmed bandit problems, we propose an adaptive sampling algorithm that approximates the optimal value of a finite-horizon Markov decision process (MDP) with finite state and action spaces. The algorithm adaptively chooses which action to sample as the sampling process proceeds and generates an asymptotically unbiased estimator, whose bias is bounded by a quantity that converges to zero at rate (ln N )/ N , where N is the total number of samples that are used per state sampled in each stage. The worst-case running-time complexity of the algorithm is O (( |A|N ) H ), independent of the size of the state space, where | A | is the size of the action space and H is the horizon length. The algorithm can be used to create an approximate receding horizon control to solve infinite-horizon MDPs. To illustrate the algorithm, computational results are reported on simple examples from inventory control. |
---|---|
ISSN: | 0030-364X 1526-5463 |
DOI: | 10.1287/opre.1040.0145 |