Loading…
STOCHASTIC GRADIENT LEARNING AND INSTABILITY: AN EXAMPLE
In this paper, we investigate real-time behavior of constant-gain stochastic gradient (SG) learning, using the Phelps model of monetary policy as a testing ground. We find that whereas the self-confirming equilibrium is stable under the mean dynamics in a very large region, real-time learning diverg...
Saved in:
Published in: | Macroeconomic dynamics 2016-04, Vol.20 (3), p.777-790 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we investigate real-time behavior of constant-gain stochastic gradient (SG) learning, using the Phelps model of monetary policy as a testing ground. We find that whereas the self-confirming equilibrium is stable under the mean dynamics in a very large region, real-time learning diverges for all but the very smallest gain values. We employ a stochastic Lyapunov function approach to demonstrate that the SG mean dynamics is easily destabilized by the noise associated with real-time learning, because its Jacobian contains stable but very small eigenvalues. We also express caution on usage of perpetual learning algorithms with such small eigenvalues, as the real-time dynamics might diverge from the equilibrium that is stable under the mean dynamics. |
---|---|
ISSN: | 1365-1005 1469-8056 |
DOI: | 10.1017/S1365100514000583 |