Loading…

Solvent-fractionated sugar cane bagasse lignin: structural characteristics and electro-spinnability

Lignin is one of the most abundant macromolecules on Earth. Lignins are obtained as by-products from the paper industry and used mostly as fuel. Their diverse composition has limited the development of high added-value applications: however, because of their abundance and sustainable origin, there i...

Full description

Saved in:
Bibliographic Details
Published in:e-Polymers 2016-03, Vol.16 (2), p.137-144
Main Authors: Leite, Rogério, de Almeida, Yêda Medeiros B., Sarmento, Sandra Maria, Alves, Kleber G.B., de Melo, Etelino Feijó, Souto-Maior, Rosa Maria
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lignin is one of the most abundant macromolecules on Earth. Lignins are obtained as by-products from the paper industry and used mostly as fuel. Their diverse composition has limited the development of high added-value applications: however, because of their abundance and sustainable origin, there is a growing interest in using lignins as a raw material and as a replacement for oil derivatives. In order to use lignins in bio-refineries, several processes must be studied and standardized. Lignin fractionation using solvents is a promising process. In this study, lignin from sugar cane bagasse (L1) was fractionated with solvents, and the fractions were characterized to evaluate structural aspects relevant for the production of fibers. L1 was extracted into four fractions with toluene (E1), ethanol (E2), methanol (E3), and dimethyl sulfoxide (DMSO, E4). Fractions E2, E3, and E4, showed only slightly different molar masses and molar mass distribution, but have relevant differences in their structural characteristics and processability. The ethanol extract (E2) provided lignins with a more flexible structure, and electro-spinning resulted in the production of nanofibers with diameters between 60 and 120 nm; the methanol fraction (E3) produced nanospheres with diameters between 90 and 350 nm; the DMSO fraction (E4) covered only a surface with electro-spray. These results show the possibility of developing high added-value applications using fractions of lignin from distinct biomasses or from their combination.
ISSN:2197-4586
1618-7229
DOI:10.1515/epoly-2015-0229