Loading…
Identification of asymmetric conditional heteroscedasticity in the presence of outliers
The identification of asymmetric conditional heteroscedasticity is often based on sample cross-correlations between past and squared observations. In this paper we analyse the effects of outliers on these cross-correlations and, consequently, on the identification of asymmetric volatilities.We showt...
Saved in:
Published in: | SERIEs : journal of the Spanish Economic Association 2016-03, Vol.7 (1), p.179-201 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The identification of asymmetric conditional heteroscedasticity is often based on sample cross-correlations between past and squared observations. In this paper we analyse the effects of outliers on these cross-correlations and, consequently, on the identification of asymmetric volatilities.We showthat, as expected, one isolated big outlier biases the sample cross-correlations towards zero and hence could hide true leverage effect. Unlike, the presence of two ormore big consecutive outliers could lead to detecting spurious asymmetries or asymmetries of the wrong sign. We also address the problem of robust estimation of the cross-correlations by extending some popular robust estimators of pairwise correlations and autocorrelations. Their finite sample resistance against outliers is compared through Monte Carlo experiments. Situations with isolated and patchy outliers of different sizes are examined. It is shown that a modified Ramsay-weighted estimator of the cross-correlations outperforms other estimators in identifying asymmetric conditionally heteroscedastic models. Finally, the results are illustrated with an empirical application. |
---|---|
ISSN: | 1869-4195 1869-4187 1869-4195 |
DOI: | 10.1007/s13209-015-0131-4 |