Loading…

Learning Spike Time Codes Through Morphological Learning With Binary Synapses

In this brief, a neuron with nonlinear dendrites (NNLDs) and binary synapses that is able to learn temporal features of spike input patterns is considered. Since binary synapses are considered, learning happens through formation and elimination of connections between the inputs and the dendritic bra...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2016-07, Vol.27 (7), p.1572-1577
Main Authors: Roy, Subhrajit, Phyo Phyo San, Hussain, Shaista, Lee Wang Wei, Basu, Arindam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this brief, a neuron with nonlinear dendrites (NNLDs) and binary synapses that is able to learn temporal features of spike input patterns is considered. Since binary synapses are considered, learning happens through formation and elimination of connections between the inputs and the dendritic branches to modify the structure or morphology of the NNLD. A morphological learning algorithm inspired by the tempotron, i.e., a recently proposed temporal learning algorithm is presented in this brief. Unlike tempotron, the proposed learning rule uses a technique to automatically adapt the NNLD threshold during training. Experimental results indicate that our NNLD with 1-bit synapses can obtain accuracy similar to that of a traditional tempotron with 4-bit synapses in classifying single spike random latency and pairwise synchrony patterns. Hence, the proposed method is better suited for robust hardware implementation in the presence of statistical variations. We also present results of applying this rule to real-life spike classification problems from the field of tactile sensing.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2015.2447011