Loading…

Learning Spike Time Codes Through Morphological Learning With Binary Synapses

In this brief, a neuron with nonlinear dendrites (NNLDs) and binary synapses that is able to learn temporal features of spike input patterns is considered. Since binary synapses are considered, learning happens through formation and elimination of connections between the inputs and the dendritic bra...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2016-07, Vol.27 (7), p.1572-1577
Main Authors: Roy, Subhrajit, Phyo Phyo San, Hussain, Shaista, Lee Wang Wei, Basu, Arindam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c466t-cef6b6d9ef1362ff8cfec581540eb8c327592ae7bca107f228b0ca8ad3df59a03
cites cdi_FETCH-LOGICAL-c466t-cef6b6d9ef1362ff8cfec581540eb8c327592ae7bca107f228b0ca8ad3df59a03
container_end_page 1577
container_issue 7
container_start_page 1572
container_title IEEE transaction on neural networks and learning systems
container_volume 27
creator Roy, Subhrajit
Phyo Phyo San
Hussain, Shaista
Lee Wang Wei
Basu, Arindam
description In this brief, a neuron with nonlinear dendrites (NNLDs) and binary synapses that is able to learn temporal features of spike input patterns is considered. Since binary synapses are considered, learning happens through formation and elimination of connections between the inputs and the dendritic branches to modify the structure or morphology of the NNLD. A morphological learning algorithm inspired by the tempotron, i.e., a recently proposed temporal learning algorithm is presented in this brief. Unlike tempotron, the proposed learning rule uses a technique to automatically adapt the NNLD threshold during training. Experimental results indicate that our NNLD with 1-bit synapses can obtain accuracy similar to that of a traditional tempotron with 4-bit synapses in classifying single spike random latency and pairwise synchrony patterns. Hence, the proposed method is better suited for robust hardware implementation in the presence of statistical variations. We also present results of applying this rule to real-life spike classification problems from the field of tactile sensing.
doi_str_mv 10.1109/TNNLS.2015.2447011
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1798038197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7154508</ieee_id><sourcerecordid>1798997766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-cef6b6d9ef1362ff8cfec581540eb8c327592ae7bca107f228b0ca8ad3df59a03</originalsourceid><addsrcrecordid>eNqN0U1PGzEQBmCralUQ5Q8UCa3UC5ek9uz66wgRhUqBHpKqva283nFi2KwXO3vg39eQNAcurQ-2JT8zkucl5DOjU8ao_rq8v58vpkAZn0JVScrYO3IMTMAESqXeH-7y9xE5TemB5iUoF5X-SI5AMFkCsGNyN0cTe9-visXgH7FY-g0Ws9BiKpbrGMbVurgLcViHLqy8NV1x8L_8dl1c-d7E52Lx3JshYfpEPjjTJTzdnyfk57fr5ex2Mv9x8312OZ_YSojtxKITjWg1OlYKcE5Zh5YrxiuKjbIlSK7BoGysYVQ6ANVQa5Rpy9ZxbWh5Qi52fYcYnkZM23rjk8WuMz2GMdVMAedA8_4flCoBFVXVv6nUSmsphcj0yxv6EMbY5z-_KloqpmVWsFM2hpQiunqIfpMHVjNav6RYv6ZYv6RY71PMRef71mOzwfZQ8jezDM52wCPi4Vnm6XGqyj_7fp9b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798038197</pqid></control><display><type>article</type><title>Learning Spike Time Codes Through Morphological Learning With Binary Synapses</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Roy, Subhrajit ; Phyo Phyo San ; Hussain, Shaista ; Lee Wang Wei ; Basu, Arindam</creator><creatorcontrib>Roy, Subhrajit ; Phyo Phyo San ; Hussain, Shaista ; Lee Wang Wei ; Basu, Arindam</creatorcontrib><description>In this brief, a neuron with nonlinear dendrites (NNLDs) and binary synapses that is able to learn temporal features of spike input patterns is considered. Since binary synapses are considered, learning happens through formation and elimination of connections between the inputs and the dendritic branches to modify the structure or morphology of the NNLD. A morphological learning algorithm inspired by the tempotron, i.e., a recently proposed temporal learning algorithm is presented in this brief. Unlike tempotron, the proposed learning rule uses a technique to automatically adapt the NNLD threshold during training. Experimental results indicate that our NNLD with 1-bit synapses can obtain accuracy similar to that of a traditional tempotron with 4-bit synapses in classifying single spike random latency and pairwise synchrony patterns. Hence, the proposed method is better suited for robust hardware implementation in the presence of statistical variations. We also present results of applying this rule to real-life spike classification problems from the field of tactile sensing.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2015.2447011</identifier><identifier>PMID: 26173221</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Action Potentials ; Algorithms ; Animals ; Artificial neural networks ; Binary synapse ; Classification ; dendrites ; Dendritic structure ; Hardware ; Humans ; Learning ; Learning systems ; Models, Neurological ; Neural networks ; Neurons ; Neurons - physiology ; plasticity ; Quantization (signal) ; Robot sensing systems ; Spikes ; spiking neuron ; Synapses ; Synapses - physiology ; tempotron ; Training</subject><ispartof>IEEE transaction on neural networks and learning systems, 2016-07, Vol.27 (7), p.1572-1577</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-cef6b6d9ef1362ff8cfec581540eb8c327592ae7bca107f228b0ca8ad3df59a03</citedby><cites>FETCH-LOGICAL-c466t-cef6b6d9ef1362ff8cfec581540eb8c327592ae7bca107f228b0ca8ad3df59a03</cites><orcidid>0000-0001-9195-3226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7154508$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26173221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy, Subhrajit</creatorcontrib><creatorcontrib>Phyo Phyo San</creatorcontrib><creatorcontrib>Hussain, Shaista</creatorcontrib><creatorcontrib>Lee Wang Wei</creatorcontrib><creatorcontrib>Basu, Arindam</creatorcontrib><title>Learning Spike Time Codes Through Morphological Learning With Binary Synapses</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>In this brief, a neuron with nonlinear dendrites (NNLDs) and binary synapses that is able to learn temporal features of spike input patterns is considered. Since binary synapses are considered, learning happens through formation and elimination of connections between the inputs and the dendritic branches to modify the structure or morphology of the NNLD. A morphological learning algorithm inspired by the tempotron, i.e., a recently proposed temporal learning algorithm is presented in this brief. Unlike tempotron, the proposed learning rule uses a technique to automatically adapt the NNLD threshold during training. Experimental results indicate that our NNLD with 1-bit synapses can obtain accuracy similar to that of a traditional tempotron with 4-bit synapses in classifying single spike random latency and pairwise synchrony patterns. Hence, the proposed method is better suited for robust hardware implementation in the presence of statistical variations. We also present results of applying this rule to real-life spike classification problems from the field of tactile sensing.</description><subject>Accuracy</subject><subject>Action Potentials</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Artificial neural networks</subject><subject>Binary synapse</subject><subject>Classification</subject><subject>dendrites</subject><subject>Dendritic structure</subject><subject>Hardware</subject><subject>Humans</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Models, Neurological</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>plasticity</subject><subject>Quantization (signal)</subject><subject>Robot sensing systems</subject><subject>Spikes</subject><subject>spiking neuron</subject><subject>Synapses</subject><subject>Synapses - physiology</subject><subject>tempotron</subject><subject>Training</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0U1PGzEQBmCralUQ5Q8UCa3UC5ek9uz66wgRhUqBHpKqva283nFi2KwXO3vg39eQNAcurQ-2JT8zkucl5DOjU8ao_rq8v58vpkAZn0JVScrYO3IMTMAESqXeH-7y9xE5TemB5iUoF5X-SI5AMFkCsGNyN0cTe9-visXgH7FY-g0Ws9BiKpbrGMbVurgLcViHLqy8NV1x8L_8dl1c-d7E52Lx3JshYfpEPjjTJTzdnyfk57fr5ex2Mv9x8312OZ_YSojtxKITjWg1OlYKcE5Zh5YrxiuKjbIlSK7BoGysYVQ6ANVQa5Rpy9ZxbWh5Qi52fYcYnkZM23rjk8WuMz2GMdVMAedA8_4flCoBFVXVv6nUSmsphcj0yxv6EMbY5z-_KloqpmVWsFM2hpQiunqIfpMHVjNav6RYv6ZYv6RY71PMRef71mOzwfZQ8jezDM52wCPi4Vnm6XGqyj_7fp9b</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Roy, Subhrajit</creator><creator>Phyo Phyo San</creator><creator>Hussain, Shaista</creator><creator>Lee Wang Wei</creator><creator>Basu, Arindam</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9195-3226</orcidid></search><sort><creationdate>201607</creationdate><title>Learning Spike Time Codes Through Morphological Learning With Binary Synapses</title><author>Roy, Subhrajit ; Phyo Phyo San ; Hussain, Shaista ; Lee Wang Wei ; Basu, Arindam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-cef6b6d9ef1362ff8cfec581540eb8c327592ae7bca107f228b0ca8ad3df59a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Action Potentials</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Artificial neural networks</topic><topic>Binary synapse</topic><topic>Classification</topic><topic>dendrites</topic><topic>Dendritic structure</topic><topic>Hardware</topic><topic>Humans</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Models, Neurological</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>plasticity</topic><topic>Quantization (signal)</topic><topic>Robot sensing systems</topic><topic>Spikes</topic><topic>spiking neuron</topic><topic>Synapses</topic><topic>Synapses - physiology</topic><topic>tempotron</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Roy, Subhrajit</creatorcontrib><creatorcontrib>Phyo Phyo San</creatorcontrib><creatorcontrib>Hussain, Shaista</creatorcontrib><creatorcontrib>Lee Wang Wei</creatorcontrib><creatorcontrib>Basu, Arindam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Subhrajit</au><au>Phyo Phyo San</au><au>Hussain, Shaista</au><au>Lee Wang Wei</au><au>Basu, Arindam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Spike Time Codes Through Morphological Learning With Binary Synapses</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2016-07</date><risdate>2016</risdate><volume>27</volume><issue>7</issue><spage>1572</spage><epage>1577</epage><pages>1572-1577</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>In this brief, a neuron with nonlinear dendrites (NNLDs) and binary synapses that is able to learn temporal features of spike input patterns is considered. Since binary synapses are considered, learning happens through formation and elimination of connections between the inputs and the dendritic branches to modify the structure or morphology of the NNLD. A morphological learning algorithm inspired by the tempotron, i.e., a recently proposed temporal learning algorithm is presented in this brief. Unlike tempotron, the proposed learning rule uses a technique to automatically adapt the NNLD threshold during training. Experimental results indicate that our NNLD with 1-bit synapses can obtain accuracy similar to that of a traditional tempotron with 4-bit synapses in classifying single spike random latency and pairwise synchrony patterns. Hence, the proposed method is better suited for robust hardware implementation in the presence of statistical variations. We also present results of applying this rule to real-life spike classification problems from the field of tactile sensing.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26173221</pmid><doi>10.1109/TNNLS.2015.2447011</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9195-3226</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2016-07, Vol.27 (7), p.1572-1577
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_journals_1798038197
source IEEE Electronic Library (IEL) Journals
subjects Accuracy
Action Potentials
Algorithms
Animals
Artificial neural networks
Binary synapse
Classification
dendrites
Dendritic structure
Hardware
Humans
Learning
Learning systems
Models, Neurological
Neural networks
Neurons
Neurons - physiology
plasticity
Quantization (signal)
Robot sensing systems
Spikes
spiking neuron
Synapses
Synapses - physiology
tempotron
Training
title Learning Spike Time Codes Through Morphological Learning With Binary Synapses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Spike%20Time%20Codes%20Through%20Morphological%20Learning%20With%20Binary%20Synapses&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Roy,%20Subhrajit&rft.date=2016-07&rft.volume=27&rft.issue=7&rft.spage=1572&rft.epage=1577&rft.pages=1572-1577&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2015.2447011&rft_dat=%3Cproquest_ieee_%3E1798997766%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c466t-cef6b6d9ef1362ff8cfec581540eb8c327592ae7bca107f228b0ca8ad3df59a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1798038197&rft_id=info:pmid/26173221&rft_ieee_id=7154508&rfr_iscdi=true