Loading…
Learning Spike Time Codes Through Morphological Learning With Binary Synapses
In this brief, a neuron with nonlinear dendrites (NNLDs) and binary synapses that is able to learn temporal features of spike input patterns is considered. Since binary synapses are considered, learning happens through formation and elimination of connections between the inputs and the dendritic bra...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2016-07, Vol.27 (7), p.1572-1577 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c466t-cef6b6d9ef1362ff8cfec581540eb8c327592ae7bca107f228b0ca8ad3df59a03 |
---|---|
cites | cdi_FETCH-LOGICAL-c466t-cef6b6d9ef1362ff8cfec581540eb8c327592ae7bca107f228b0ca8ad3df59a03 |
container_end_page | 1577 |
container_issue | 7 |
container_start_page | 1572 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 27 |
creator | Roy, Subhrajit Phyo Phyo San Hussain, Shaista Lee Wang Wei Basu, Arindam |
description | In this brief, a neuron with nonlinear dendrites (NNLDs) and binary synapses that is able to learn temporal features of spike input patterns is considered. Since binary synapses are considered, learning happens through formation and elimination of connections between the inputs and the dendritic branches to modify the structure or morphology of the NNLD. A morphological learning algorithm inspired by the tempotron, i.e., a recently proposed temporal learning algorithm is presented in this brief. Unlike tempotron, the proposed learning rule uses a technique to automatically adapt the NNLD threshold during training. Experimental results indicate that our NNLD with 1-bit synapses can obtain accuracy similar to that of a traditional tempotron with 4-bit synapses in classifying single spike random latency and pairwise synchrony patterns. Hence, the proposed method is better suited for robust hardware implementation in the presence of statistical variations. We also present results of applying this rule to real-life spike classification problems from the field of tactile sensing. |
doi_str_mv | 10.1109/TNNLS.2015.2447011 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1798038197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7154508</ieee_id><sourcerecordid>1798997766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-cef6b6d9ef1362ff8cfec581540eb8c327592ae7bca107f228b0ca8ad3df59a03</originalsourceid><addsrcrecordid>eNqN0U1PGzEQBmCralUQ5Q8UCa3UC5ek9uz66wgRhUqBHpKqva283nFi2KwXO3vg39eQNAcurQ-2JT8zkucl5DOjU8ao_rq8v58vpkAZn0JVScrYO3IMTMAESqXeH-7y9xE5TemB5iUoF5X-SI5AMFkCsGNyN0cTe9-visXgH7FY-g0Ws9BiKpbrGMbVurgLcViHLqy8NV1x8L_8dl1c-d7E52Lx3JshYfpEPjjTJTzdnyfk57fr5ex2Mv9x8312OZ_YSojtxKITjWg1OlYKcE5Zh5YrxiuKjbIlSK7BoGysYVQ6ANVQa5Rpy9ZxbWh5Qi52fYcYnkZM23rjk8WuMz2GMdVMAedA8_4flCoBFVXVv6nUSmsphcj0yxv6EMbY5z-_KloqpmVWsFM2hpQiunqIfpMHVjNav6RYv6ZYv6RY71PMRef71mOzwfZQ8jezDM52wCPi4Vnm6XGqyj_7fp9b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798038197</pqid></control><display><type>article</type><title>Learning Spike Time Codes Through Morphological Learning With Binary Synapses</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Roy, Subhrajit ; Phyo Phyo San ; Hussain, Shaista ; Lee Wang Wei ; Basu, Arindam</creator><creatorcontrib>Roy, Subhrajit ; Phyo Phyo San ; Hussain, Shaista ; Lee Wang Wei ; Basu, Arindam</creatorcontrib><description>In this brief, a neuron with nonlinear dendrites (NNLDs) and binary synapses that is able to learn temporal features of spike input patterns is considered. Since binary synapses are considered, learning happens through formation and elimination of connections between the inputs and the dendritic branches to modify the structure or morphology of the NNLD. A morphological learning algorithm inspired by the tempotron, i.e., a recently proposed temporal learning algorithm is presented in this brief. Unlike tempotron, the proposed learning rule uses a technique to automatically adapt the NNLD threshold during training. Experimental results indicate that our NNLD with 1-bit synapses can obtain accuracy similar to that of a traditional tempotron with 4-bit synapses in classifying single spike random latency and pairwise synchrony patterns. Hence, the proposed method is better suited for robust hardware implementation in the presence of statistical variations. We also present results of applying this rule to real-life spike classification problems from the field of tactile sensing.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2015.2447011</identifier><identifier>PMID: 26173221</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Action Potentials ; Algorithms ; Animals ; Artificial neural networks ; Binary synapse ; Classification ; dendrites ; Dendritic structure ; Hardware ; Humans ; Learning ; Learning systems ; Models, Neurological ; Neural networks ; Neurons ; Neurons - physiology ; plasticity ; Quantization (signal) ; Robot sensing systems ; Spikes ; spiking neuron ; Synapses ; Synapses - physiology ; tempotron ; Training</subject><ispartof>IEEE transaction on neural networks and learning systems, 2016-07, Vol.27 (7), p.1572-1577</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-cef6b6d9ef1362ff8cfec581540eb8c327592ae7bca107f228b0ca8ad3df59a03</citedby><cites>FETCH-LOGICAL-c466t-cef6b6d9ef1362ff8cfec581540eb8c327592ae7bca107f228b0ca8ad3df59a03</cites><orcidid>0000-0001-9195-3226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7154508$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26173221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy, Subhrajit</creatorcontrib><creatorcontrib>Phyo Phyo San</creatorcontrib><creatorcontrib>Hussain, Shaista</creatorcontrib><creatorcontrib>Lee Wang Wei</creatorcontrib><creatorcontrib>Basu, Arindam</creatorcontrib><title>Learning Spike Time Codes Through Morphological Learning With Binary Synapses</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>In this brief, a neuron with nonlinear dendrites (NNLDs) and binary synapses that is able to learn temporal features of spike input patterns is considered. Since binary synapses are considered, learning happens through formation and elimination of connections between the inputs and the dendritic branches to modify the structure or morphology of the NNLD. A morphological learning algorithm inspired by the tempotron, i.e., a recently proposed temporal learning algorithm is presented in this brief. Unlike tempotron, the proposed learning rule uses a technique to automatically adapt the NNLD threshold during training. Experimental results indicate that our NNLD with 1-bit synapses can obtain accuracy similar to that of a traditional tempotron with 4-bit synapses in classifying single spike random latency and pairwise synchrony patterns. Hence, the proposed method is better suited for robust hardware implementation in the presence of statistical variations. We also present results of applying this rule to real-life spike classification problems from the field of tactile sensing.</description><subject>Accuracy</subject><subject>Action Potentials</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Artificial neural networks</subject><subject>Binary synapse</subject><subject>Classification</subject><subject>dendrites</subject><subject>Dendritic structure</subject><subject>Hardware</subject><subject>Humans</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Models, Neurological</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>plasticity</subject><subject>Quantization (signal)</subject><subject>Robot sensing systems</subject><subject>Spikes</subject><subject>spiking neuron</subject><subject>Synapses</subject><subject>Synapses - physiology</subject><subject>tempotron</subject><subject>Training</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0U1PGzEQBmCralUQ5Q8UCa3UC5ek9uz66wgRhUqBHpKqva283nFi2KwXO3vg39eQNAcurQ-2JT8zkucl5DOjU8ao_rq8v58vpkAZn0JVScrYO3IMTMAESqXeH-7y9xE5TemB5iUoF5X-SI5AMFkCsGNyN0cTe9-visXgH7FY-g0Ws9BiKpbrGMbVurgLcViHLqy8NV1x8L_8dl1c-d7E52Lx3JshYfpEPjjTJTzdnyfk57fr5ex2Mv9x8312OZ_YSojtxKITjWg1OlYKcE5Zh5YrxiuKjbIlSK7BoGysYVQ6ANVQa5Rpy9ZxbWh5Qi52fYcYnkZM23rjk8WuMz2GMdVMAedA8_4flCoBFVXVv6nUSmsphcj0yxv6EMbY5z-_KloqpmVWsFM2hpQiunqIfpMHVjNav6RYv6ZYv6RY71PMRef71mOzwfZQ8jezDM52wCPi4Vnm6XGqyj_7fp9b</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Roy, Subhrajit</creator><creator>Phyo Phyo San</creator><creator>Hussain, Shaista</creator><creator>Lee Wang Wei</creator><creator>Basu, Arindam</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9195-3226</orcidid></search><sort><creationdate>201607</creationdate><title>Learning Spike Time Codes Through Morphological Learning With Binary Synapses</title><author>Roy, Subhrajit ; Phyo Phyo San ; Hussain, Shaista ; Lee Wang Wei ; Basu, Arindam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-cef6b6d9ef1362ff8cfec581540eb8c327592ae7bca107f228b0ca8ad3df59a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Action Potentials</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Artificial neural networks</topic><topic>Binary synapse</topic><topic>Classification</topic><topic>dendrites</topic><topic>Dendritic structure</topic><topic>Hardware</topic><topic>Humans</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Models, Neurological</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>plasticity</topic><topic>Quantization (signal)</topic><topic>Robot sensing systems</topic><topic>Spikes</topic><topic>spiking neuron</topic><topic>Synapses</topic><topic>Synapses - physiology</topic><topic>tempotron</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Roy, Subhrajit</creatorcontrib><creatorcontrib>Phyo Phyo San</creatorcontrib><creatorcontrib>Hussain, Shaista</creatorcontrib><creatorcontrib>Lee Wang Wei</creatorcontrib><creatorcontrib>Basu, Arindam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Subhrajit</au><au>Phyo Phyo San</au><au>Hussain, Shaista</au><au>Lee Wang Wei</au><au>Basu, Arindam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Spike Time Codes Through Morphological Learning With Binary Synapses</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2016-07</date><risdate>2016</risdate><volume>27</volume><issue>7</issue><spage>1572</spage><epage>1577</epage><pages>1572-1577</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>In this brief, a neuron with nonlinear dendrites (NNLDs) and binary synapses that is able to learn temporal features of spike input patterns is considered. Since binary synapses are considered, learning happens through formation and elimination of connections between the inputs and the dendritic branches to modify the structure or morphology of the NNLD. A morphological learning algorithm inspired by the tempotron, i.e., a recently proposed temporal learning algorithm is presented in this brief. Unlike tempotron, the proposed learning rule uses a technique to automatically adapt the NNLD threshold during training. Experimental results indicate that our NNLD with 1-bit synapses can obtain accuracy similar to that of a traditional tempotron with 4-bit synapses in classifying single spike random latency and pairwise synchrony patterns. Hence, the proposed method is better suited for robust hardware implementation in the presence of statistical variations. We also present results of applying this rule to real-life spike classification problems from the field of tactile sensing.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26173221</pmid><doi>10.1109/TNNLS.2015.2447011</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9195-3226</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2016-07, Vol.27 (7), p.1572-1577 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_journals_1798038197 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Accuracy Action Potentials Algorithms Animals Artificial neural networks Binary synapse Classification dendrites Dendritic structure Hardware Humans Learning Learning systems Models, Neurological Neural networks Neurons Neurons - physiology plasticity Quantization (signal) Robot sensing systems Spikes spiking neuron Synapses Synapses - physiology tempotron Training |
title | Learning Spike Time Codes Through Morphological Learning With Binary Synapses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Spike%20Time%20Codes%20Through%20Morphological%20Learning%20With%20Binary%20Synapses&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Roy,%20Subhrajit&rft.date=2016-07&rft.volume=27&rft.issue=7&rft.spage=1572&rft.epage=1577&rft.pages=1572-1577&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2015.2447011&rft_dat=%3Cproquest_ieee_%3E1798997766%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c466t-cef6b6d9ef1362ff8cfec581540eb8c327592ae7bca107f228b0ca8ad3df59a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1798038197&rft_id=info:pmid/26173221&rft_ieee_id=7154508&rfr_iscdi=true |