Loading…

A comparison of AdaBoost algorithms for time series forecast combination

Recently, combination algorithms from machine learning classification have been extended to time series regression, most notably seven variants of the popular AdaBoost algorithm. Despite their theoretical promise their empirical accuracy in forecasting has not yet been assessed, either against each...

Full description

Saved in:
Bibliographic Details
Published in:International journal of forecasting 2016-10, Vol.32 (4), p.1103-1119
Main Authors: Barrow, Devon K., Crone, Sven F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, combination algorithms from machine learning classification have been extended to time series regression, most notably seven variants of the popular AdaBoost algorithm. Despite their theoretical promise their empirical accuracy in forecasting has not yet been assessed, either against each other or against any established approaches of forecast combination, model selection, or statistical benchmark algorithms. Also, none of the algorithms have been assessed on a representative set of empirical data, using only few synthetic time series. We remedy this omission by conducting a rigorous empirical evaluation using a representative set of 111 industry time series and a valid and reliable experimental design. We develop a full-factorial design over derived Boosting meta-parameters, creating 42 novel Boosting variants, and create a further 47 novel Boosting variants using research insights from forecast combination. Experiments show that only few Boosting meta-parameters increase accuracy, while meta-parameters derived from forecast combination research outperform others.
ISSN:0169-2070
1872-8200
DOI:10.1016/j.ijforecast.2016.01.006