Loading…

SON Coordination in Heterogeneous Networks: A Reinforcement Learning Framework

An important problem of today's mobile network operators is to bring down the capital expenditures and operational expenditures. One strategy is to automate the parameter tuning on the small cells through the so-called self-organizing network (SON) functionalities, such as cell range expansion,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications 2016-09, Vol.15 (9), p.5835-5847
Main Authors: Iacoboaiea, Ovidiu-Constantin, Sayrac, Berna, Ben Jemaa, Sana, Bianchi, Pascal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-77dfbe035dd78a5d9e32cb18dbdc04c2dc3d8501063abea5a6e75503c71258103
cites cdi_FETCH-LOGICAL-c291t-77dfbe035dd78a5d9e32cb18dbdc04c2dc3d8501063abea5a6e75503c71258103
container_end_page 5847
container_issue 9
container_start_page 5835
container_title IEEE transactions on wireless communications
container_volume 15
creator Iacoboaiea, Ovidiu-Constantin
Sayrac, Berna
Ben Jemaa, Sana
Bianchi, Pascal
description An important problem of today's mobile network operators is to bring down the capital expenditures and operational expenditures. One strategy is to automate the parameter tuning on the small cells through the so-called self-organizing network (SON) functionalities, such as cell range expansion, mobility robustness optimization, or enhanced Inter-Cell Interference Coordination. Having several of these functionalities in the network will surely create conflicts, as, for example, they may try to change the same parameter in the opposite directions. This raises that the need for an SON COordinator (SONCO) meant to arbitrate the parameter change requests of the SON functions, ensuring some degree of fairness. It is difficult to anticipate the impact of accepting several simultaneous requests. In this paper, we provide a SONCO design based on reinforcement learning (RL) as it allows us to learn from previous experiences and improve our future decisions. Typically, RL algorithms are complex. To reduce this complexity, we employ two flavors of function approximation and provide a study-case. Results show that the proposed SONCO design is capable of biasing this fairness among the SON functions by means of weights attributed to the SON functions. Also, we evaluate the tracking capability of the algorithms.
doi_str_mv 10.1109/TWC.2016.2571695
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1830953537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7476897</ieee_id><sourcerecordid>4223627401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-77dfbe035dd78a5d9e32cb18dbdc04c2dc3d8501063abea5a6e75503c71258103</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3A9dQ8mse4K8VaobSgFZchk9wpU21Skyniv3eGFlf3LL5zLnwI3VIyopSUD-uP6YgRKkdMKCpLcYYGVAhdMDbW533msqBMyUt0lfOWEKqkEAO0fFst8TTG5Jtg2yYG3AQ8hxZS3ECAeMh4Ce1PTJ_5EU_wKzShjsnBDkKLF2BTaMIGz5LdQQ9do4vafmW4Od0hep89rafzYrF6fplOFoVjJW0LpXxdAeHCe6Wt8CVw5iqqfeUdGTvmHfdaEEoktxVYYSUoIQh3ijKhKeFDdH_c3af4fYDcmm08pNC9NFRzUgouuOoocqRcijknqM0-NTubfg0lprdmOmumt2ZO1rrK3bHSAMA_rsZK6lLxP5uoaIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830953537</pqid></control><display><type>article</type><title>SON Coordination in Heterogeneous Networks: A Reinforcement Learning Framework</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Iacoboaiea, Ovidiu-Constantin ; Sayrac, Berna ; Ben Jemaa, Sana ; Bianchi, Pascal</creator><creatorcontrib>Iacoboaiea, Ovidiu-Constantin ; Sayrac, Berna ; Ben Jemaa, Sana ; Bianchi, Pascal</creatorcontrib><description>An important problem of today's mobile network operators is to bring down the capital expenditures and operational expenditures. One strategy is to automate the parameter tuning on the small cells through the so-called self-organizing network (SON) functionalities, such as cell range expansion, mobility robustness optimization, or enhanced Inter-Cell Interference Coordination. Having several of these functionalities in the network will surely create conflicts, as, for example, they may try to change the same parameter in the opposite directions. This raises that the need for an SON COordinator (SONCO) meant to arbitrate the parameter change requests of the SON functions, ensuring some degree of fairness. It is difficult to anticipate the impact of accepting several simultaneous requests. In this paper, we provide a SONCO design based on reinforcement learning (RL) as it allows us to learn from previous experiences and improve our future decisions. Typically, RL algorithms are complex. To reduce this complexity, we employ two flavors of function approximation and provide a study-case. Results show that the proposed SONCO design is capable of biasing this fairness among the SON functions by means of weights attributed to the SON functions. Also, we evaluate the tracking capability of the algorithms.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2016.2571695</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Capital expenditures ; CRE ; eICIC ; function approximation ; Heterogeneous networks ; Learning (artificial intelligence) ; LTE ; Mobile communication ; Mobile computing ; MRO ; Optimization ; reinforcement learning ; SON coordination ; SON instances ; state aggregation ; Telecommunications industry ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2016-09, Vol.15 (9), p.5835-5847</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-77dfbe035dd78a5d9e32cb18dbdc04c2dc3d8501063abea5a6e75503c71258103</citedby><cites>FETCH-LOGICAL-c291t-77dfbe035dd78a5d9e32cb18dbdc04c2dc3d8501063abea5a6e75503c71258103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7476897$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Iacoboaiea, Ovidiu-Constantin</creatorcontrib><creatorcontrib>Sayrac, Berna</creatorcontrib><creatorcontrib>Ben Jemaa, Sana</creatorcontrib><creatorcontrib>Bianchi, Pascal</creatorcontrib><title>SON Coordination in Heterogeneous Networks: A Reinforcement Learning Framework</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>An important problem of today's mobile network operators is to bring down the capital expenditures and operational expenditures. One strategy is to automate the parameter tuning on the small cells through the so-called self-organizing network (SON) functionalities, such as cell range expansion, mobility robustness optimization, or enhanced Inter-Cell Interference Coordination. Having several of these functionalities in the network will surely create conflicts, as, for example, they may try to change the same parameter in the opposite directions. This raises that the need for an SON COordinator (SONCO) meant to arbitrate the parameter change requests of the SON functions, ensuring some degree of fairness. It is difficult to anticipate the impact of accepting several simultaneous requests. In this paper, we provide a SONCO design based on reinforcement learning (RL) as it allows us to learn from previous experiences and improve our future decisions. Typically, RL algorithms are complex. To reduce this complexity, we employ two flavors of function approximation and provide a study-case. Results show that the proposed SONCO design is capable of biasing this fairness among the SON functions by means of weights attributed to the SON functions. Also, we evaluate the tracking capability of the algorithms.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Capital expenditures</subject><subject>CRE</subject><subject>eICIC</subject><subject>function approximation</subject><subject>Heterogeneous networks</subject><subject>Learning (artificial intelligence)</subject><subject>LTE</subject><subject>Mobile communication</subject><subject>Mobile computing</subject><subject>MRO</subject><subject>Optimization</subject><subject>reinforcement learning</subject><subject>SON coordination</subject><subject>SON instances</subject><subject>state aggregation</subject><subject>Telecommunications industry</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKt7wU3A9dQ8mse4K8VaobSgFZchk9wpU21Skyniv3eGFlf3LL5zLnwI3VIyopSUD-uP6YgRKkdMKCpLcYYGVAhdMDbW533msqBMyUt0lfOWEKqkEAO0fFst8TTG5Jtg2yYG3AQ8hxZS3ECAeMh4Ce1PTJ_5EU_wKzShjsnBDkKLF2BTaMIGz5LdQQ9do4vafmW4Od0hep89rafzYrF6fplOFoVjJW0LpXxdAeHCe6Wt8CVw5iqqfeUdGTvmHfdaEEoktxVYYSUoIQh3ijKhKeFDdH_c3af4fYDcmm08pNC9NFRzUgouuOoocqRcijknqM0-NTubfg0lprdmOmumt2ZO1rrK3bHSAMA_rsZK6lLxP5uoaIY</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Iacoboaiea, Ovidiu-Constantin</creator><creator>Sayrac, Berna</creator><creator>Ben Jemaa, Sana</creator><creator>Bianchi, Pascal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201609</creationdate><title>SON Coordination in Heterogeneous Networks: A Reinforcement Learning Framework</title><author>Iacoboaiea, Ovidiu-Constantin ; Sayrac, Berna ; Ben Jemaa, Sana ; Bianchi, Pascal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-77dfbe035dd78a5d9e32cb18dbdc04c2dc3d8501063abea5a6e75503c71258103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Capital expenditures</topic><topic>CRE</topic><topic>eICIC</topic><topic>function approximation</topic><topic>Heterogeneous networks</topic><topic>Learning (artificial intelligence)</topic><topic>LTE</topic><topic>Mobile communication</topic><topic>Mobile computing</topic><topic>MRO</topic><topic>Optimization</topic><topic>reinforcement learning</topic><topic>SON coordination</topic><topic>SON instances</topic><topic>state aggregation</topic><topic>Telecommunications industry</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iacoboaiea, Ovidiu-Constantin</creatorcontrib><creatorcontrib>Sayrac, Berna</creatorcontrib><creatorcontrib>Ben Jemaa, Sana</creatorcontrib><creatorcontrib>Bianchi, Pascal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iacoboaiea, Ovidiu-Constantin</au><au>Sayrac, Berna</au><au>Ben Jemaa, Sana</au><au>Bianchi, Pascal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SON Coordination in Heterogeneous Networks: A Reinforcement Learning Framework</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2016-09</date><risdate>2016</risdate><volume>15</volume><issue>9</issue><spage>5835</spage><epage>5847</epage><pages>5835-5847</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>An important problem of today's mobile network operators is to bring down the capital expenditures and operational expenditures. One strategy is to automate the parameter tuning on the small cells through the so-called self-organizing network (SON) functionalities, such as cell range expansion, mobility robustness optimization, or enhanced Inter-Cell Interference Coordination. Having several of these functionalities in the network will surely create conflicts, as, for example, they may try to change the same parameter in the opposite directions. This raises that the need for an SON COordinator (SONCO) meant to arbitrate the parameter change requests of the SON functions, ensuring some degree of fairness. It is difficult to anticipate the impact of accepting several simultaneous requests. In this paper, we provide a SONCO design based on reinforcement learning (RL) as it allows us to learn from previous experiences and improve our future decisions. Typically, RL algorithms are complex. To reduce this complexity, we employ two flavors of function approximation and provide a study-case. Results show that the proposed SONCO design is capable of biasing this fairness among the SON functions by means of weights attributed to the SON functions. Also, we evaluate the tracking capability of the algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2016.2571695</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2016-09, Vol.15 (9), p.5835-5847
issn 1536-1276
1558-2248
language eng
recordid cdi_proquest_journals_1830953537
source IEEE Electronic Library (IEL) Journals
subjects Algorithm design and analysis
Algorithms
Capital expenditures
CRE
eICIC
function approximation
Heterogeneous networks
Learning (artificial intelligence)
LTE
Mobile communication
Mobile computing
MRO
Optimization
reinforcement learning
SON coordination
SON instances
state aggregation
Telecommunications industry
Wireless communication
title SON Coordination in Heterogeneous Networks: A Reinforcement Learning Framework
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SON%20Coordination%20in%20Heterogeneous%20Networks:%20A%20Reinforcement%20Learning%20Framework&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Iacoboaiea,%20Ovidiu-Constantin&rft.date=2016-09&rft.volume=15&rft.issue=9&rft.spage=5835&rft.epage=5847&rft.pages=5835-5847&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2016.2571695&rft_dat=%3Cproquest_ieee_%3E4223627401%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-77dfbe035dd78a5d9e32cb18dbdc04c2dc3d8501063abea5a6e75503c71258103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1830953537&rft_id=info:pmid/&rft_ieee_id=7476897&rfr_iscdi=true