Loading…
Predictor-Based Control of Systems With State Multiplicative Noise
The problem of H∞ state-feedback control of linear continuous-time systems with state multiplicative noise in the presence of input delay is investigated. A predictor-based control is applied, for the first time, to these systems. A new condition for stability is derived in a form of a linear matrix...
Saved in:
Published in: | IEEE transactions on automatic control 2017-02, Vol.62 (2), p.914-920 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The problem of H∞ state-feedback control of linear continuous-time systems with state multiplicative noise in the presence of input delay is investigated. A predictor-based control is applied, for the first time, to these systems. A new condition for stability is derived in a form of a linear matrix inequality. The latter condition is extended to one that guarantees a prescribed L 2 -gain bound for the stochastic system. Solutions are obtained for both constant and time-varying delays. Because of the multiplicative noise, the predictor-based control cannot stabilize the system for arbitrarily large delay. It admits, however, delays that are significantly larger than the delays that can be treated by the corresponding non-predictive state-feedback control. The theoretical results are demonstrated by two examples. The first example shows the advantage of the predictor-based controller and the second one demonstrates the applicability of the theory to process control systems. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2016.2593968 |