Loading…
Sensorless SVM-Direct Torque Control for Induction Motor Drive Using Sliding Mode Observers
This paper presents an improved direct torque control strategy (DTC) for induction motor drive. The conventional DTC suffers from high torque ripples and variable switching frequency due to utilizing hysteresis comparators. The presented technique uses the space vector modulation in order to cover D...
Saved in:
Published in: | Journal of control, automation & electrical systems automation & electrical systems, 2017-04, Vol.28 (2), p.189-202 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents an improved direct torque control strategy (DTC) for induction motor drive. The conventional DTC suffers from high torque ripples and variable switching frequency due to utilizing hysteresis comparators. The presented technique uses the space vector modulation in order to cover DTC drawbacks and reduce high torque and flux ripples by maintaining a fixed switching frequency. An anti-windup proportional integral controller is considered for the outer speed loop. Furthermore, the control design is combined with dual sliding mode observers for speed/flux and load torque estimation in order to improve the control performances and reduce different uncertainties. Moreover, they minimize the number of sensors to decrease the cost and increase the reliability of the system. The effectiveness of the sensorless method has been investigated by simulation and experimental validation using MATLAB/Simulink software with real time interface based on dSpace 1104 bored. |
---|---|
ISSN: | 2195-3880 2195-3899 |
DOI: | 10.1007/s40313-016-0294-7 |