Loading…
The use of a single pseudo-sample in approximate Bayesian computation
We analyze the computational efficiency of approximate Bayesian computation (ABC), which approximates a likelihood function by drawing pseudo-samples from the associated model. For the rejection sampling version of ABC, it is known that multiple pseudo-samples cannot substantially increase (and can...
Saved in:
Published in: | Statistics and computing 2017-05, Vol.27 (3), p.583-590 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We analyze the computational efficiency of approximate Bayesian computation (ABC), which approximates a likelihood function by drawing pseudo-samples from the associated model. For the rejection sampling version of ABC, it is known that multiple pseudo-samples cannot substantially increase (and can substantially decrease) the efficiency of the algorithm as compared to employing a high-variance estimate based on a single pseudo-sample. We show that this conclusion also holds for a Markov chain Monte Carlo version of ABC, implying that it is unnecessary to tune the number of pseudo-samples used in ABC-MCMC. This conclusion is in contrast to particle MCMC methods, for which increasing the number of particles can provide large gains in computational efficiency. |
---|---|
ISSN: | 0960-3174 1573-1375 |
DOI: | 10.1007/s11222-016-9640-7 |