Loading…
On the effective medium model for particles with a complex structure
We consider a generalization of the effective medium approximation to the case of matrices containing macroscopically inhomogeneous particles with an arbitrary structure (cermet topology). The form of the result is determined to a considerable extent by the heuristic choice of effective cells used t...
Saved in:
Published in: | Technical physics 2017, Vol.62 (1), p.6-13 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider a generalization of the effective medium approximation to the case of matrices containing macroscopically inhomogeneous particles with an arbitrary structure (cermet topology). The form of the result is determined to a considerable extent by the heuristic choice of effective cells used to estimate the field and induction values averaged over the volume. The simplest choice of a particle in an unperturbed field as a cell leads to the Maxwell–Garnett approximation, while the self-consistent effective medium approximation corresponds to the replacement of the unperturbed field by the mean field. As an example, we describe particles with a shell, as well as statistically anisotropic media with a single preferred direction. |
---|---|
ISSN: | 1063-7842 1090-6525 |
DOI: | 10.1134/S1063784217010029 |