Loading…
Nano-scale copper oxidation on leadframe surface
Copper oxidation studies were carried out by means of field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS) techniques. The growth of copper o...
Saved in:
Published in: | Ionics 2017-02, Vol.23 (2), p.319-329 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Copper oxidation studies were carried out by means of field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS) techniques. The growth of copper oxide occurs as a copper surface comes in an oxygen containing environment. The reaction sequence leading to oxidation of the copper surface is generally accepted to be oxygen chemisorption, nucleation and growth of the surface oxide and bulk oxide growth. HRTEM examination of the cross section of the oxidized copper sample revealed the interface region in between the copper and copper oxide. At high oxidation temperature, formation of micro-voids and separations were observed along this interface region. Poor adhesion at this interface region due to micro-voids and separation were found to be the root cause of delamination issue. EELS analysis determined that for regions with intact interface the oxidation system is Cu/CuO/Cu
2
O/CuO, however, in regions containing micro-voids or separation it is found to be Cu/Cu
2
O/CuO. |
---|---|
ISSN: | 0947-7047 1862-0760 |
DOI: | 10.1007/s11581-016-1894-8 |