Loading…
An analytical model of chip heat-carrying capacity for high-speed dry hobbing based on 3D chip geometry
High-speed dry hobbing is the dominating green technique for gear hobbing owing to its high productivity and environmental friendliness. However, a large amount of cutting heat is generated during the machining process due to the absence of metalworking fluids and the adoption of high cutting speed....
Saved in:
Published in: | International journal of precision engineering and manufacturing 2017-02, Vol.18 (2), p.245-256 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High-speed dry hobbing is the dominating green technique for gear hobbing owing to its high productivity and environmental friendliness. However, a large amount of cutting heat is generated during the machining process due to the absence of metalworking fluids and the adoption of high cutting speed. A better understanding of chip heat-carrying capacity for high-speed dry hobbing is quite necessary when aiming to reduce the influence of cutting heat on machining precision. In this paper, an analytical model is established to quantitatively determine the chip heat-carrying capacity of high-speed dry hobbing. According to the progressive heat transfer characteristic of high-speed dry hobbing, cutting heat generation and transmission are analyzed. 3D chip geometry is numerically calculated by modeling the complex hob geometry and the interrelated kinematic relations of high-speed dry hobbing. Based on the 3D chip geometry and the specific cutting energy, chip heat-carrying capacity model is developed considering three heat sources. In this model, chip heat partition is experimentally determined by calorimetric method. With the help of the developed model, chip heat-carrying quantity and chip heat-carrying efficiency are discussed by investigating their influence factors (hob rotation speed, axial feed, feed method, chip removal time and hob geometry). |
---|---|
ISSN: | 2234-7593 2005-4602 |
DOI: | 10.1007/s12541-017-0032-5 |