Loading…
Geometricity for derived categories of algebraic stacks
We prove that the dg category of perfect complexes on a smooth, proper Deligne–Mumford stack over a field of characteristic zero is geometric in the sense of Orlov, and in particular smooth and proper. On the level of triangulated categories, this means that the derived category of perfect complexes...
Saved in:
Published in: | Selecta mathematica (Basel, Switzerland) Switzerland), 2016-10, Vol.22 (4), p.2535-2568 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove that the dg category of perfect complexes on a smooth, proper Deligne–Mumford stack over a field of characteristic zero is geometric in the sense of Orlov, and in particular smooth and proper. On the level of triangulated categories, this means that the derived category of perfect complexes embeds as an admissible subcategory into the bounded derived category of coherent sheaves on a smooth, projective variety. The same holds for a smooth, projective, tame Artin stack over an arbitrary field. |
---|---|
ISSN: | 1022-1824 1420-9020 |
DOI: | 10.1007/s00029-016-0280-8 |