Loading…

The sharp maximal function approach to L p estimates for operators structured on Hörmander’s vector fields

We consider a nonvariational degenerate elliptic operator of the kind L u ≡ ∑ i , j = 1 q a i j ( x ) X i X j u where X 1 , … , X q are a system of left invariant, 1-homogeneous, Hörmander’s vector fields on a Carnot group in R n , the matrix a i j is symmetric, uniformly positive on a bounded domai...

Full description

Saved in:
Bibliographic Details
Published in:Revista matemática complutense 2016-01, Vol.29 (3), p.531-557
Main Authors: Bramanti, Marco, Toschi, Marisa
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider a nonvariational degenerate elliptic operator of the kind L u ≡ ∑ i , j = 1 q a i j ( x ) X i X j u where X 1 , … , X q are a system of left invariant, 1-homogeneous, Hörmander’s vector fields on a Carnot group in R n , the matrix a i j is symmetric, uniformly positive on a bounded domain Ω ⊂ R n and the coefficients satisfy a i j ∈ V M O l o c Ω ∩ L ∞ Ω . We give a new proof of the interior W X 2 , p estimates X i X j u L p Ω ′ + X i u L p Ω ′ ≤ c L u L p Ω + u L p Ω for i , j = 1 , 2 , … , q , u ∈ W X 2 , p Ω , Ω ′ ⋐ Ω and p ∈ 1 , ∞ , first proved by Bramanti–Brandolini in (Rend. Sem. Mat. dell’Univ. e del Politec. di Torino, 58:389–433, 2000), extending to this context Krylov’ technique, introduced in (Comm. PDEs, 32, 453–475, 2007), consisting in estimating the sharp maximal function of X i X j u .
ISSN:1139-1138
1988-2807
DOI:10.1007/s13163-016-0206-1