Loading…

The sharp maximal function approach to L p estimates for operators structured on Hörmander’s vector fields

We consider a nonvariational degenerate elliptic operator of the kind L u ≡ ∑ i , j = 1 q a i j ( x ) X i X j u where X 1 , … , X q are a system of left invariant, 1-homogeneous, Hörmander’s vector fields on a Carnot group in R n , the matrix a i j is symmetric, uniformly positive on a bounded domai...

Full description

Saved in:
Bibliographic Details
Published in:Revista matemática complutense 2016-01, Vol.29 (3), p.531-557
Main Authors: Bramanti, Marco, Toschi, Marisa
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 557
container_issue 3
container_start_page 531
container_title Revista matemática complutense
container_volume 29
creator Bramanti, Marco
Toschi, Marisa
description We consider a nonvariational degenerate elliptic operator of the kind L u ≡ ∑ i , j = 1 q a i j ( x ) X i X j u where X 1 , … , X q are a system of left invariant, 1-homogeneous, Hörmander’s vector fields on a Carnot group in R n , the matrix a i j is symmetric, uniformly positive on a bounded domain Ω ⊂ R n and the coefficients satisfy a i j ∈ V M O l o c Ω ∩ L ∞ Ω . We give a new proof of the interior W X 2 , p estimates X i X j u L p Ω ′ + X i u L p Ω ′ ≤ c L u L p Ω + u L p Ω for i , j = 1 , 2 , … , q , u ∈ W X 2 , p Ω , Ω ′ ⋐ Ω and p ∈ 1 , ∞ , first proved by Bramanti–Brandolini in (Rend. Sem. Mat. dell’Univ. e del Politec. di Torino, 58:389–433, 2000), extending to this context Krylov’ technique, introduced in (Comm. PDEs, 32, 453–475, 2007), consisting in estimating the sharp maximal function of X i X j u .
doi_str_mv 10.1007/s13163-016-0206-1
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1880883154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880883154</sourcerecordid><originalsourceid>FETCH-proquest_journals_18808831543</originalsourceid><addsrcrecordid>eNqNjT1OxDAQhS0EEsvPAehGojY7s85mnRqBtqDcfmUljpJVEpsZG1FyDS7CBbgJJ8EFB6B5b6T3vXlK3RE-EOJuLWSoNhqp1rjBWtOZWlFjrd5Y3J2Xm0yji9hLdSVyQtw2la1Waj4MHmRwHGF27-PsJujz0qYxLOBi5ODaAVKAF4jgJRUgeYE-MITo2aXAApI4tymz76C09t9fPLul8_zz8Snw5tsCQT_6qZMbddG7Sfztn1-r--enw-Nel6HXXP4fTyHzUqIjWYvWGtpW5n_ULztwUm0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880883154</pqid></control><display><type>article</type><title>The sharp maximal function approach to L p estimates for operators structured on Hörmander’s vector fields</title><source>Springer Nature</source><creator>Bramanti, Marco ; Toschi, Marisa</creator><creatorcontrib>Bramanti, Marco ; Toschi, Marisa</creatorcontrib><description>We consider a nonvariational degenerate elliptic operator of the kind L u ≡ ∑ i , j = 1 q a i j ( x ) X i X j u where X 1 , … , X q are a system of left invariant, 1-homogeneous, Hörmander’s vector fields on a Carnot group in R n , the matrix a i j is symmetric, uniformly positive on a bounded domain Ω ⊂ R n and the coefficients satisfy a i j ∈ V M O l o c Ω ∩ L ∞ Ω . We give a new proof of the interior W X 2 , p estimates X i X j u L p Ω ′ + X i u L p Ω ′ ≤ c L u L p Ω + u L p Ω for i , j = 1 , 2 , … , q , u ∈ W X 2 , p Ω , Ω ′ ⋐ Ω and p ∈ 1 , ∞ , first proved by Bramanti–Brandolini in (Rend. Sem. Mat. dell’Univ. e del Politec. di Torino, 58:389–433, 2000), extending to this context Krylov’ technique, introduced in (Comm. PDEs, 32, 453–475, 2007), consisting in estimating the sharp maximal function of X i X j u .</description><identifier>ISSN: 1139-1138</identifier><identifier>EISSN: 1988-2807</identifier><identifier>DOI: 10.1007/s13163-016-0206-1</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Fields (mathematics) ; Mathematical analysis ; Matrix methods</subject><ispartof>Revista matemática complutense, 2016-01, Vol.29 (3), p.531-557</ispartof><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bramanti, Marco</creatorcontrib><creatorcontrib>Toschi, Marisa</creatorcontrib><title>The sharp maximal function approach to L p estimates for operators structured on Hörmander’s vector fields</title><title>Revista matemática complutense</title><description>We consider a nonvariational degenerate elliptic operator of the kind L u ≡ ∑ i , j = 1 q a i j ( x ) X i X j u where X 1 , … , X q are a system of left invariant, 1-homogeneous, Hörmander’s vector fields on a Carnot group in R n , the matrix a i j is symmetric, uniformly positive on a bounded domain Ω ⊂ R n and the coefficients satisfy a i j ∈ V M O l o c Ω ∩ L ∞ Ω . We give a new proof of the interior W X 2 , p estimates X i X j u L p Ω ′ + X i u L p Ω ′ ≤ c L u L p Ω + u L p Ω for i , j = 1 , 2 , … , q , u ∈ W X 2 , p Ω , Ω ′ ⋐ Ω and p ∈ 1 , ∞ , first proved by Bramanti–Brandolini in (Rend. Sem. Mat. dell’Univ. e del Politec. di Torino, 58:389–433, 2000), extending to this context Krylov’ technique, introduced in (Comm. PDEs, 32, 453–475, 2007), consisting in estimating the sharp maximal function of X i X j u .</description><subject>Fields (mathematics)</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><issn>1139-1138</issn><issn>1988-2807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNjT1OxDAQhS0EEsvPAehGojY7s85mnRqBtqDcfmUljpJVEpsZG1FyDS7CBbgJJ8EFB6B5b6T3vXlK3RE-EOJuLWSoNhqp1rjBWtOZWlFjrd5Y3J2Xm0yji9hLdSVyQtw2la1Waj4MHmRwHGF27-PsJujz0qYxLOBi5ODaAVKAF4jgJRUgeYE-MITo2aXAApI4tymz76C09t9fPLul8_zz8Snw5tsCQT_6qZMbddG7Sfztn1-r--enw-Nel6HXXP4fTyHzUqIjWYvWGtpW5n_ULztwUm0</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Bramanti, Marco</creator><creator>Toschi, Marisa</creator><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20160101</creationdate><title>The sharp maximal function approach to L p estimates for operators structured on Hörmander’s vector fields</title><author>Bramanti, Marco ; Toschi, Marisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_18808831543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Fields (mathematics)</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bramanti, Marco</creatorcontrib><creatorcontrib>Toschi, Marisa</creatorcontrib><jtitle>Revista matemática complutense</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bramanti, Marco</au><au>Toschi, Marisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The sharp maximal function approach to L p estimates for operators structured on Hörmander’s vector fields</atitle><jtitle>Revista matemática complutense</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>29</volume><issue>3</issue><spage>531</spage><epage>557</epage><pages>531-557</pages><issn>1139-1138</issn><eissn>1988-2807</eissn><abstract>We consider a nonvariational degenerate elliptic operator of the kind L u ≡ ∑ i , j = 1 q a i j ( x ) X i X j u where X 1 , … , X q are a system of left invariant, 1-homogeneous, Hörmander’s vector fields on a Carnot group in R n , the matrix a i j is symmetric, uniformly positive on a bounded domain Ω ⊂ R n and the coefficients satisfy a i j ∈ V M O l o c Ω ∩ L ∞ Ω . We give a new proof of the interior W X 2 , p estimates X i X j u L p Ω ′ + X i u L p Ω ′ ≤ c L u L p Ω + u L p Ω for i , j = 1 , 2 , … , q , u ∈ W X 2 , p Ω , Ω ′ ⋐ Ω and p ∈ 1 , ∞ , first proved by Bramanti–Brandolini in (Rend. Sem. Mat. dell’Univ. e del Politec. di Torino, 58:389–433, 2000), extending to this context Krylov’ technique, introduced in (Comm. PDEs, 32, 453–475, 2007), consisting in estimating the sharp maximal function of X i X j u .</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s13163-016-0206-1</doi></addata></record>
fulltext fulltext
identifier ISSN: 1139-1138
ispartof Revista matemática complutense, 2016-01, Vol.29 (3), p.531-557
issn 1139-1138
1988-2807
language eng
recordid cdi_proquest_journals_1880883154
source Springer Nature
subjects Fields (mathematics)
Mathematical analysis
Matrix methods
title The sharp maximal function approach to L p estimates for operators structured on Hörmander’s vector fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20sharp%20maximal%20function%20approach%20to%20L%20p%20estimates%20for%20operators%20structured%20on%20H%C3%B6rmander%E2%80%99s%20vector%20fields&rft.jtitle=Revista%20matem%C3%A1tica%20complutense&rft.au=Bramanti,%20Marco&rft.date=2016-01-01&rft.volume=29&rft.issue=3&rft.spage=531&rft.epage=557&rft.pages=531-557&rft.issn=1139-1138&rft.eissn=1988-2807&rft_id=info:doi/10.1007/s13163-016-0206-1&rft_dat=%3Cproquest%3E1880883154%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_18808831543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880883154&rft_id=info:pmid/&rfr_iscdi=true