Loading…

Elastic deformations driven by non-uniform lubrication flows

The ability to create dynamic deformations of micron-sized structures is relevant to a wide variety of applications such as adaptable optics, soft robotics and reconfigurable microfluidic devices. In this work, we examine non-uniform lubrication flow as a mechanism to create complex deformation fiel...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2017-02, Vol.812, p.841-865
Main Authors: Rubin, Shimon, Tulchinsky, Arie, Gat, Amir D., Bercovici, Moran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ability to create dynamic deformations of micron-sized structures is relevant to a wide variety of applications such as adaptable optics, soft robotics and reconfigurable microfluidic devices. In this work, we examine non-uniform lubrication flow as a mechanism to create complex deformation fields in an elastic plate. We consider a Kirchhoff–Love elasticity model for the plate and Hele-Shaw flow in a narrow gap between the plate and a parallel rigid surface. Based on linearization of the Reynolds equation, we obtain a governing equation which relates elastic deformations to gradients in non-homogeneous physical properties of the fluid (e.g. body forces, viscosity and slip velocity). We then focus on a specific case of non-uniform Helmholtz–Smoluchowski electro-osmotic slip velocity, and provide a method for determining the zeta-potential distribution necessary to generate arbitrary static and quasi-static deformations of the elastic plate. Extending the problem to time-dependent solutions, we analyse transient effects on asymptotically static solutions, and finally provide a closed form solution for a Green’s function for time periodic actuations.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2016.830