Loading…
Colour of turbulence
In this paper, we address the problem of how to account for second-order statistics of turbulent flows using low-complexity stochastic dynamical models based on the linearized Navier–Stokes equations. The complexity is quantified by the number of degrees of freedom in the linearized evolution model...
Saved in:
Published in: | Journal of fluid mechanics 2017-02, Vol.812, p.636-680 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we address the problem of how to account for second-order statistics of turbulent flows using low-complexity stochastic dynamical models based on the linearized Navier–Stokes equations. The complexity is quantified by the number of degrees of freedom in the linearized evolution model that are directly influenced by stochastic excitation sources. For the case where only a subset of velocity correlations are known, we develop a framework to complete unavailable second-order statistics in a way that is consistent with linearization around turbulent mean velocity. In general, white-in-time stochastic forcing is not sufficient to explain turbulent flow statistics. We develop models for coloured-in-time forcing using a maximum entropy formulation together with a regularization that serves as a proxy for rank minimization. We show that coloured-in-time excitation of the Navier–Stokes equations can also be interpreted as a low-rank modification to the generator of the linearized dynamics. Our method provides a data-driven refinement of models that originate from first principles and captures complex dynamics of turbulent flows in a way that is tractable for analysis, optimization and control design. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2016.682 |