Loading…

Colour of turbulence

In this paper, we address the problem of how to account for second-order statistics of turbulent flows using low-complexity stochastic dynamical models based on the linearized Navier–Stokes equations. The complexity is quantified by the number of degrees of freedom in the linearized evolution model...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2017-02, Vol.812, p.636-680
Main Authors: Zare, Armin, Jovanović, Mihailo R., Georgiou, Tryphon T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we address the problem of how to account for second-order statistics of turbulent flows using low-complexity stochastic dynamical models based on the linearized Navier–Stokes equations. The complexity is quantified by the number of degrees of freedom in the linearized evolution model that are directly influenced by stochastic excitation sources. For the case where only a subset of velocity correlations are known, we develop a framework to complete unavailable second-order statistics in a way that is consistent with linearization around turbulent mean velocity. In general, white-in-time stochastic forcing is not sufficient to explain turbulent flow statistics. We develop models for coloured-in-time forcing using a maximum entropy formulation together with a regularization that serves as a proxy for rank minimization. We show that coloured-in-time excitation of the Navier–Stokes equations can also be interpreted as a low-rank modification to the generator of the linearized dynamics. Our method provides a data-driven refinement of models that originate from first principles and captures complex dynamics of turbulent flows in a way that is tractable for analysis, optimization and control design.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2016.682