Loading…
Generalized parallel pi-equidistant ruled surfaces
In this paper, parallel pi-equidistant ruled surfaces in 3-dimensional Euclidean space E3, [6], were generalized to n-dimensional Euclidean space En. Then mean curvatures, Lipschitz–Killing curvatures, Gauss curvatures, scalar normal curvatures, Riemannian curvatures, Ricci curvatures, scalar curvat...
Saved in:
Published in: | Acta et commentationes Universitatis Tartuensis de mathematica 2013-06, Vol.17 (1), p.3-18 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, parallel pi-equidistant ruled surfaces in 3-dimensional Euclidean space E3, [6], were generalized to n-dimensional Euclidean space En. Then mean curvatures, Lipschitz–Killing curvatures, Gauss curvatures, scalar normal curvatures, Riemannian curvatures, Ricci curvatures, scalar curvatures of (m + 1)-dimensional parallel pi-equidistant ruled surfaces were calculated and some relations between these curvatures were found. Also, examples related to the parallel p3-equidistant ruled surfaces in the E3 are given. |
---|---|
ISSN: | 1406-2283 2228-4699 |
DOI: | 10.12697/ACUTM.2013.17.01 |