Loading…
Selective adsorption and recycle of Cu^sup 2+^ from aqueous solution by modified sugarcane bagasse under dynamic condition
Tetraethylenepentamine modified sugarcane bagasse was prepared and applied to test its feasibility in removing and recovering Cu2+ from wastewater under dynamic condition. Results showed that the Cu2+ could be selectively absorbed from wastewater by the modified SCB fixed bed column. To understand t...
Saved in:
Published in: | Environmental science and pollution research international 2017-04, Vol.24 (10), p.9202 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tetraethylenepentamine modified sugarcane bagasse was prepared and applied to test its feasibility in removing and recovering Cu2+ from wastewater under dynamic condition. Results showed that the Cu2+ could be selectively absorbed from wastewater by the modified SCB fixed bed column. To understand the adsorption mechanism, Cd2+ had been selected as the model interfering ion to investigate how co-ions influence the adsorption of Cu2+ on the sorbent. It was observed that the adsorption capacity of the sorbent for Cu2+ (0.26 mmol g-1) was significantly higher than that of Cd2+ (0.03 mmol g-1), even when the Cd2+ initial concentration was 100 times higher than that of Cu2+ in the binary system. This finding indicated that the presence of Cd2+ in the solution exerted negligible influence on the adsorption of Cu2+ on the modified SCB. The selectivity of the modified sorbent was further confirmed in the Cu/Cd/Mg/Pb/K quinary system. Further analysis to dynamic adsorption experiment illustrated that, due to the presence of amine groups, the modified SCB showed strong coordination ability to Cu2+, which allowed the other adsorbed ions (e.g., Cd2+) desorbed. This high adsorption selectivity toward Cu2+ suggested that this prepared sorbent would be a promising candidate for removing and recovering Cu2+ from wastewater. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-017-8608-2 |