Loading…
Nowhere‐Zero 5‐Flows On Cubic Graphs with Oddness 4
Tutte's 5‐flow conjecture from 1954 states that every bridgeless graph has a nowhere‐zero 5‐flow. It suffices to prove the conjecture for cyclically 6‐edge‐connected cubic graphs. We prove that every cyclically 6‐edge‐connected cubic graph with oddness at most 4 has a nowhere‐zero 5‐flow. This...
Saved in:
Published in: | Journal of graph theory 2017-06, Vol.85 (2), p.363-371 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tutte's 5‐flow conjecture from 1954 states that every bridgeless graph has a nowhere‐zero 5‐flow. It suffices to prove the conjecture for cyclically 6‐edge‐connected cubic graphs. We prove that every cyclically 6‐edge‐connected cubic graph with oddness at most 4 has a nowhere‐zero 5‐flow. This implies that every minimum counterexample to the 5‐flow conjecture has oddness at least 6. |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.22065 |