Loading…

New results on affine invariant points

We prove a conjecture of B. Grünbaum stating that the set of affine invariant points of a convex body equals the set of points invariant under all affine linear symmetries of the convex body. As a consequence we give a short proof of the fact that the affine space of affine linear points is infinite...

Full description

Saved in:
Bibliographic Details
Published in:Israel journal of mathematics 2017-04, Vol.219 (2), p.529-548
Main Author: Mordhorst, Olaf
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prove a conjecture of B. Grünbaum stating that the set of affine invariant points of a convex body equals the set of points invariant under all affine linear symmetries of the convex body. As a consequence we give a short proof of the fact that the affine space of affine linear points is infinite dimensional. In particular, we show that the set of affine invariant points with no dual is of the second category. We investigate extremal cases for a class of symmetry measures. We show that the centers of the John and Löwner ellipsoids can be far apart and we give the optimal order for the extremal distance between the two centers.
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-017-1489-8