Loading…
New results on affine invariant points
We prove a conjecture of B. Grünbaum stating that the set of affine invariant points of a convex body equals the set of points invariant under all affine linear symmetries of the convex body. As a consequence we give a short proof of the fact that the affine space of affine linear points is infinite...
Saved in:
Published in: | Israel journal of mathematics 2017-04, Vol.219 (2), p.529-548 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove a conjecture of B. Grünbaum stating that the set of affine invariant points of a convex body equals the set of points invariant under all affine linear symmetries of the convex body. As a consequence we give a short proof of the fact that the affine space of affine linear points is infinite dimensional. In particular, we show that the set of affine invariant points with no dual is of the second category. We investigate extremal cases for a class of symmetry measures. We show that the centers of the John and Löwner ellipsoids can be far apart and we give the optimal order for the extremal distance between the two centers. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-017-1489-8 |