Loading…

New results on affine invariant points

We prove a conjecture of B. Grünbaum stating that the set of affine invariant points of a convex body equals the set of points invariant under all affine linear symmetries of the convex body. As a consequence we give a short proof of the fact that the affine space of affine linear points is infinite...

Full description

Saved in:
Bibliographic Details
Published in:Israel journal of mathematics 2017-04, Vol.219 (2), p.529-548
Main Author: Mordhorst, Olaf
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-2e6ec23f92b41ea3926820f808ca2b5e3adcc90b8461481d85946f346962367d3
cites cdi_FETCH-LOGICAL-c316t-2e6ec23f92b41ea3926820f808ca2b5e3adcc90b8461481d85946f346962367d3
container_end_page 548
container_issue 2
container_start_page 529
container_title Israel journal of mathematics
container_volume 219
creator Mordhorst, Olaf
description We prove a conjecture of B. Grünbaum stating that the set of affine invariant points of a convex body equals the set of points invariant under all affine linear symmetries of the convex body. As a consequence we give a short proof of the fact that the affine space of affine linear points is infinite dimensional. In particular, we show that the set of affine invariant points with no dual is of the second category. We investigate extremal cases for a class of symmetry measures. We show that the centers of the John and Löwner ellipsoids can be far apart and we give the optimal order for the extremal distance between the two centers.
doi_str_mv 10.1007/s11856-017-1489-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1898076354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898076354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2e6ec23f92b41ea3926820f808ca2b5e3adcc90b8461481d85946f346962367d3</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoWEd_gLuC4C76XtKkyVIGv2DQja5DmibSYUxr0ir-ezvUhRtXb3PuvY9DyDnCFQLU1xlRCUkBa4qV0lQdkAKFFFQJxENSADCkDGt2TE5y3gIIXiMvyOWT_yqTz9NuzGUfSxtCF33ZxU-bOhvHcui7OOZTchTsLvuz37sir3e3L-sHunm-f1zfbKjjKEfKvPSO8aBZU6G3XDOpGAQFylnWCM9t65yGRlVy_hJbJXQlA6-klozLuuUrcrH0Dqn_mHwezbafUpwnDSqtoJZcVDOFC-VSn3PywQype7fp2yCYvQ6z6DCzDrPXYdScYUsmz2x88-lP87-hH8vdYCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898076354</pqid></control><display><type>article</type><title>New results on affine invariant points</title><source>Springer Nature</source><creator>Mordhorst, Olaf</creator><creatorcontrib>Mordhorst, Olaf</creatorcontrib><description>We prove a conjecture of B. Grünbaum stating that the set of affine invariant points of a convex body equals the set of points invariant under all affine linear symmetries of the convex body. As a consequence we give a short proof of the fact that the affine space of affine linear points is infinite dimensional. In particular, we show that the set of affine invariant points with no dual is of the second category. We investigate extremal cases for a class of symmetry measures. We show that the centers of the John and Löwner ellipsoids can be far apart and we give the optimal order for the extremal distance between the two centers.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-017-1489-8</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Ellipsoids ; Group Theory and Generalizations ; Invariants ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical</subject><ispartof>Israel journal of mathematics, 2017-04, Vol.219 (2), p.529-548</ispartof><rights>Hebrew University of Jerusalem 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2e6ec23f92b41ea3926820f808ca2b5e3adcc90b8461481d85946f346962367d3</citedby><cites>FETCH-LOGICAL-c316t-2e6ec23f92b41ea3926820f808ca2b5e3adcc90b8461481d85946f346962367d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Mordhorst, Olaf</creatorcontrib><title>New results on affine invariant points</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>We prove a conjecture of B. Grünbaum stating that the set of affine invariant points of a convex body equals the set of points invariant under all affine linear symmetries of the convex body. As a consequence we give a short proof of the fact that the affine space of affine linear points is infinite dimensional. In particular, we show that the set of affine invariant points with no dual is of the second category. We investigate extremal cases for a class of symmetry measures. We show that the centers of the John and Löwner ellipsoids can be far apart and we give the optimal order for the extremal distance between the two centers.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Ellipsoids</subject><subject>Group Theory and Generalizations</subject><subject>Invariants</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoWEd_gLuC4C76XtKkyVIGv2DQja5DmibSYUxr0ir-ezvUhRtXb3PuvY9DyDnCFQLU1xlRCUkBa4qV0lQdkAKFFFQJxENSADCkDGt2TE5y3gIIXiMvyOWT_yqTz9NuzGUfSxtCF33ZxU-bOhvHcui7OOZTchTsLvuz37sir3e3L-sHunm-f1zfbKjjKEfKvPSO8aBZU6G3XDOpGAQFylnWCM9t65yGRlVy_hJbJXQlA6-klozLuuUrcrH0Dqn_mHwezbafUpwnDSqtoJZcVDOFC-VSn3PywQype7fp2yCYvQ6z6DCzDrPXYdScYUsmz2x88-lP87-hH8vdYCs</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Mordhorst, Olaf</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170401</creationdate><title>New results on affine invariant points</title><author>Mordhorst, Olaf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2e6ec23f92b41ea3926820f808ca2b5e3adcc90b8461481d85946f346962367d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Ellipsoids</topic><topic>Group Theory and Generalizations</topic><topic>Invariants</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mordhorst, Olaf</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mordhorst, Olaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New results on affine invariant points</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>219</volume><issue>2</issue><spage>529</spage><epage>548</epage><pages>529-548</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>We prove a conjecture of B. Grünbaum stating that the set of affine invariant points of a convex body equals the set of points invariant under all affine linear symmetries of the convex body. As a consequence we give a short proof of the fact that the affine space of affine linear points is infinite dimensional. In particular, we show that the set of affine invariant points with no dual is of the second category. We investigate extremal cases for a class of symmetry measures. We show that the centers of the John and Löwner ellipsoids can be far apart and we give the optimal order for the extremal distance between the two centers.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-017-1489-8</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-2172
ispartof Israel journal of mathematics, 2017-04, Vol.219 (2), p.529-548
issn 0021-2172
1565-8511
language eng
recordid cdi_proquest_journals_1898076354
source Springer Nature
subjects Algebra
Analysis
Applications of Mathematics
Ellipsoids
Group Theory and Generalizations
Invariants
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Theoretical
title New results on affine invariant points
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20results%20on%20affine%20invariant%20points&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Mordhorst,%20Olaf&rft.date=2017-04-01&rft.volume=219&rft.issue=2&rft.spage=529&rft.epage=548&rft.pages=529-548&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-017-1489-8&rft_dat=%3Cproquest_cross%3E1898076354%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-2e6ec23f92b41ea3926820f808ca2b5e3adcc90b8461481d85946f346962367d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1898076354&rft_id=info:pmid/&rfr_iscdi=true