Loading…
New results on affine invariant points
We prove a conjecture of B. Grünbaum stating that the set of affine invariant points of a convex body equals the set of points invariant under all affine linear symmetries of the convex body. As a consequence we give a short proof of the fact that the affine space of affine linear points is infinite...
Saved in:
Published in: | Israel journal of mathematics 2017-04, Vol.219 (2), p.529-548 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-2e6ec23f92b41ea3926820f808ca2b5e3adcc90b8461481d85946f346962367d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-2e6ec23f92b41ea3926820f808ca2b5e3adcc90b8461481d85946f346962367d3 |
container_end_page | 548 |
container_issue | 2 |
container_start_page | 529 |
container_title | Israel journal of mathematics |
container_volume | 219 |
creator | Mordhorst, Olaf |
description | We prove a conjecture of B. Grünbaum stating that the set of affine invariant points of a convex body equals the set of points invariant under all affine linear symmetries of the convex body. As a consequence we give a short proof of the fact that the affine space of affine linear points is infinite dimensional. In particular, we show that the set of affine invariant points with no dual is of the second category. We investigate extremal cases for a class of symmetry measures. We show that the centers of the John and Löwner ellipsoids can be far apart and we give the optimal order for the extremal distance between the two centers. |
doi_str_mv | 10.1007/s11856-017-1489-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1898076354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898076354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2e6ec23f92b41ea3926820f808ca2b5e3adcc90b8461481d85946f346962367d3</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoWEd_gLuC4C76XtKkyVIGv2DQja5DmibSYUxr0ir-ezvUhRtXb3PuvY9DyDnCFQLU1xlRCUkBa4qV0lQdkAKFFFQJxENSADCkDGt2TE5y3gIIXiMvyOWT_yqTz9NuzGUfSxtCF33ZxU-bOhvHcui7OOZTchTsLvuz37sir3e3L-sHunm-f1zfbKjjKEfKvPSO8aBZU6G3XDOpGAQFylnWCM9t65yGRlVy_hJbJXQlA6-klozLuuUrcrH0Dqn_mHwezbafUpwnDSqtoJZcVDOFC-VSn3PywQype7fp2yCYvQ6z6DCzDrPXYdScYUsmz2x88-lP87-hH8vdYCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898076354</pqid></control><display><type>article</type><title>New results on affine invariant points</title><source>Springer Nature</source><creator>Mordhorst, Olaf</creator><creatorcontrib>Mordhorst, Olaf</creatorcontrib><description>We prove a conjecture of B. Grünbaum stating that the set of affine invariant points of a convex body equals the set of points invariant under all affine linear symmetries of the convex body. As a consequence we give a short proof of the fact that the affine space of affine linear points is infinite dimensional. In particular, we show that the set of affine invariant points with no dual is of the second category. We investigate extremal cases for a class of symmetry measures. We show that the centers of the John and Löwner ellipsoids can be far apart and we give the optimal order for the extremal distance between the two centers.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-017-1489-8</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Ellipsoids ; Group Theory and Generalizations ; Invariants ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical</subject><ispartof>Israel journal of mathematics, 2017-04, Vol.219 (2), p.529-548</ispartof><rights>Hebrew University of Jerusalem 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2e6ec23f92b41ea3926820f808ca2b5e3adcc90b8461481d85946f346962367d3</citedby><cites>FETCH-LOGICAL-c316t-2e6ec23f92b41ea3926820f808ca2b5e3adcc90b8461481d85946f346962367d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Mordhorst, Olaf</creatorcontrib><title>New results on affine invariant points</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>We prove a conjecture of B. Grünbaum stating that the set of affine invariant points of a convex body equals the set of points invariant under all affine linear symmetries of the convex body. As a consequence we give a short proof of the fact that the affine space of affine linear points is infinite dimensional. In particular, we show that the set of affine invariant points with no dual is of the second category. We investigate extremal cases for a class of symmetry measures. We show that the centers of the John and Löwner ellipsoids can be far apart and we give the optimal order for the extremal distance between the two centers.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Ellipsoids</subject><subject>Group Theory and Generalizations</subject><subject>Invariants</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoWEd_gLuC4C76XtKkyVIGv2DQja5DmibSYUxr0ir-ezvUhRtXb3PuvY9DyDnCFQLU1xlRCUkBa4qV0lQdkAKFFFQJxENSADCkDGt2TE5y3gIIXiMvyOWT_yqTz9NuzGUfSxtCF33ZxU-bOhvHcui7OOZTchTsLvuz37sir3e3L-sHunm-f1zfbKjjKEfKvPSO8aBZU6G3XDOpGAQFylnWCM9t65yGRlVy_hJbJXQlA6-klozLuuUrcrH0Dqn_mHwezbafUpwnDSqtoJZcVDOFC-VSn3PywQype7fp2yCYvQ6z6DCzDrPXYdScYUsmz2x88-lP87-hH8vdYCs</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Mordhorst, Olaf</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170401</creationdate><title>New results on affine invariant points</title><author>Mordhorst, Olaf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2e6ec23f92b41ea3926820f808ca2b5e3adcc90b8461481d85946f346962367d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Ellipsoids</topic><topic>Group Theory and Generalizations</topic><topic>Invariants</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mordhorst, Olaf</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mordhorst, Olaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New results on affine invariant points</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>219</volume><issue>2</issue><spage>529</spage><epage>548</epage><pages>529-548</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>We prove a conjecture of B. Grünbaum stating that the set of affine invariant points of a convex body equals the set of points invariant under all affine linear symmetries of the convex body. As a consequence we give a short proof of the fact that the affine space of affine linear points is infinite dimensional. In particular, we show that the set of affine invariant points with no dual is of the second category. We investigate extremal cases for a class of symmetry measures. We show that the centers of the John and Löwner ellipsoids can be far apart and we give the optimal order for the extremal distance between the two centers.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-017-1489-8</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-2172 |
ispartof | Israel journal of mathematics, 2017-04, Vol.219 (2), p.529-548 |
issn | 0021-2172 1565-8511 |
language | eng |
recordid | cdi_proquest_journals_1898076354 |
source | Springer Nature |
subjects | Algebra Analysis Applications of Mathematics Ellipsoids Group Theory and Generalizations Invariants Mathematical and Computational Physics Mathematics Mathematics and Statistics Theoretical |
title | New results on affine invariant points |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20results%20on%20affine%20invariant%20points&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Mordhorst,%20Olaf&rft.date=2017-04-01&rft.volume=219&rft.issue=2&rft.spage=529&rft.epage=548&rft.pages=529-548&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-017-1489-8&rft_dat=%3Cproquest_cross%3E1898076354%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-2e6ec23f92b41ea3926820f808ca2b5e3adcc90b8461481d85946f346962367d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1898076354&rft_id=info:pmid/&rfr_iscdi=true |