Loading…
Heating System for Riser Size Minimizing in Sand Casting Process and Its Experimental Verification
In the conventional sand casting process, the size of the riser is made larger than that of the cavity (product part) in order for the molten metal in the riser to solidify at a later stage than the molten metal in the cavity. In this study, a continuous heating method is developed and applied to th...
Saved in:
Published in: | Metals (Basel ) 2017-04, Vol.7 (4), p.130 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the conventional sand casting process, the size of the riser is made larger than that of the cavity (product part) in order for the molten metal in the riser to solidify at a later stage than the molten metal in the cavity. In this study, a continuous heating method is developed and applied to the riser, using a cylindrical heater, to minimize the size of the riser. A mold having four cavities is designed for casting turbine housings. The height and diameter of the riser are chosen to be 80 mm and 20 mm, respectively. Solidification analysis results, using the analysis program MAGMA soft for casting simulation, showed that when the heater is implemented, the riser is the last to solidify. However, without the heater, the riser solidifies before the cavity, thus causing the riser to function improperly. Moreover, misruns are generated in the casted product if the heater is not implemented, as opposed to the case of a solid product without any defects, with the heater attached in the riser. |
---|---|
ISSN: | 2075-4701 2075-4701 |
DOI: | 10.3390/met7040130 |