Loading…
Necessary and sufficient conditions for power convergence rate of approximations in Tikhonov’s scheme for solving ill-posed optimization problems
We investigate a rate of convergence of estimates for approximations generated by Tikhonov’s scheme for solving ill-posed optimization problems with smooth functionals under a structural nonlinearity condition in a Hilbert space, in the cases of exact and noisy input data. In the noise-free case, we...
Saved in:
Published in: | Russian mathematics 2017-06, Vol.61 (6), p.51-59 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate a rate of convergence of estimates for approximations generated by Tikhonov’s scheme for solving ill-posed optimization problems with smooth functionals under a structural nonlinearity condition in a Hilbert space, in the cases of exact and noisy input data. In the noise-free case, we prove that the power source representation of the desired solution is close to a necessary and sufficient condition for the power convergence estimate having the same exponent with respect to the regularization parameter. In the presence of a noise, we give a parameter choice rule that leads for Tikhonov’s scheme to a power accuracy estimate with respect to the noise level. |
---|---|
ISSN: | 1066-369X 1934-810X |
DOI: | 10.3103/S1066369X1706007X |