Loading…

Linearly convergent away-step conditional gradient for non-strongly convex functions

We consider the problem of minimizing the sum of a linear function and a composition of a strongly convex function with a linear transformation over a compact polyhedral set. Jaggi and Lacoste-Julien (An affine invariant linear convergence analysis for Frank-Wolfe algorithms. NIPS 2013 Workshop on G...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming 2017-07, Vol.164 (1-2), p.1-27
Main Authors: Beck, Amir, Shtern, Shimrit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the problem of minimizing the sum of a linear function and a composition of a strongly convex function with a linear transformation over a compact polyhedral set. Jaggi and Lacoste-Julien (An affine invariant linear convergence analysis for Frank-Wolfe algorithms. NIPS 2013 Workshop on Greedy Algorithms, Frank-Wolfe and Friends, 2014 ) show that the conditional gradient method with away steps — employed on the aforementioned problem without the additional linear term — has a linear rate of convergence, depending on the so-called pyramidal width of the feasible set. We revisit this result and provide a variant of the algorithm and an analysis based on simple linear programming duality arguments, as well as corresponding error bounds. This new analysis (a) enables the incorporation of the additional linear term, and (b) depends on a new constant, that is explicitly expressed in terms of the problem’s parameters and the geometry of the feasible set. This constant replaces the pyramidal width, which is difficult to evaluate.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-016-1069-4