Loading…

Simplified modelling and development of a bi-directionally adjustable constant-force compliant gripper

This paper proposes the design of a wholly mechanical constant-force gripper that can accommodate the imprecise manipulation of brittle/delicate objects by the actuation. This was achieved by designing a constant-force mechanism as the jaw that allowed a constant force to be applied to the grasping...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2017-06, Vol.231 (11), p.2110-2123
Main Authors: Hao, Guangbo, Mullins, John, Cronin, Kevin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes the design of a wholly mechanical constant-force gripper that can accommodate the imprecise manipulation of brittle/delicate objects by the actuation. This was achieved by designing a constant-force mechanism as the jaw that allowed a constant force to be applied to the grasping objects regardless of the displacement of the mechanism. The constant-force mechanism is attached to the end effector of the gripper via a parallelogram mechanism which ensures that the jaws remain in parallel. The constant-force mechanism combines the negative stiffness of a bistable mechanism and the positive stiffness of a linear spring to generate a constant force output. By preloading the positive stiffness mechanism, the magnitude of the constant force can be adjusted to be as low as zero. The constant-force mechanism has been fully modelled and simulated using finite element analysis. A normalised force-displacement curve has been developed that allows to obtain the simplified analytical negative stiffness of the bistable mechanism. The design formulation to find the optimal configuration that produces the most constant force has been developed. Illustrated experiments prove the concept of the design although the discrepancies between finite element analysis results and testing results exist due to bistable beam manufacturing error.
ISSN:0954-4062
2041-2983
DOI:10.1177/0954406216628557