Loading…
Study of parallel programming models on computer clusters with Intel MIC coprocessors
Coprocessors based on the Intel Many Integrated Core (MIC) Architecture have been adopted in many high-performance computer clusters. Typical parallel programming models, such as MPI and OpenMP, are supported on MIC processors to achieve the parallelism. In this work, we conduct a detailed study on...
Saved in:
Published in: | The international journal of high performance computing applications 2017-07, Vol.31 (4), p.303-315 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Coprocessors based on the Intel Many Integrated Core (MIC) Architecture have been adopted in many high-performance computer clusters. Typical parallel programming models, such as MPI and OpenMP, are supported on MIC processors to achieve the parallelism. In this work, we conduct a detailed study on the performance and scalability of the MIC processors under different programming models using the Beacon computer cluster. Our findings are as follows. (1) The native MPI programming model on the MIC processors is typically better than the offload programming model, which offloads the workload to MIC cores using OpenMP. (2) On top of the native MPI programming model, multithreading inside each MPI process can further improve the performance for parallel applications on computer clusters with MIC coprocessors. (3) Given a fixed number of MPI processes, it is a good strategy to schedule these MPI processes to as few MIC processors as possible to reduce the cross-processor communication overhead. (4) The hybrid MPI programming model, in which data processing is distributed to both MIC cores and CPU cores, can outperform the native MPI programming model. |
---|---|
ISSN: | 1094-3420 1741-2846 |
DOI: | 10.1177/1094342015580864 |