Loading…

Efficient design optimization of variable-density cellular structures for additive manufacturing: theory and experimental validation

Purpose The purpose of the paper is to propose a homogenization-based topology optimization method to optimize the design of variable-density cellular structure, in order to achieve lightweight design and overcome some of the manufacturability issues in additive manufacturing. Design/methodology/app...

Full description

Saved in:
Bibliographic Details
Published in:Rapid prototyping journal 2017-06, Vol.23 (4), p.660-677
Main Authors: Cheng, Lin, Zhang, Pu, Biyikli, Emre, Bai, Jiaxi, Robbins, Joshua, To, Albert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose The purpose of the paper is to propose a homogenization-based topology optimization method to optimize the design of variable-density cellular structure, in order to achieve lightweight design and overcome some of the manufacturability issues in additive manufacturing. Design/methodology/approach First, homogenization is performed to capture the effective mechanical properties of cellular structures through the scaling law as a function their relative density. Second, the scaling law is used directly in the topology optimization algorithm to compute the optimal density distribution for the part being optimized. Third, a new technique is presented to reconstruct the computer-aided design (CAD) model of the optimal variable-density cellular structure. The proposed method is validated by comparing the results obtained through homogenized model, full-scale simulation and experimentally testing the optimized parts after being additive manufactured. Findings The test examples demonstrate that the homogenization-based method is efficient, accurate and is able to produce manufacturable designs. Originality/value The optimized designs in our examples also show significant increase in stiffness and strength when compared to the original designs with identical overall weight.
ISSN:1355-2546
1758-7670
DOI:10.1108/RPJ-04-2016-0069