Loading…

Links between generalized Montréal-functors

Let o be the ring of integers in a finite extension K / Q p and G = G ( Q p ) be the Q p -points of a Q p -split reductive group G defined over Z p with connected centre and split Borel B = TN . We show that Breuil’s (Algebra Number Theory 9(10):2241–2291, 2015 ) pseudocompact ( φ , Γ ) -module D ξ...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische Zeitschrift 2017-08, Vol.286 (3-4), p.1227-1275, Article 1227
Main Authors: Erdélyi, Márton, Zábrádi, Gergely
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let o be the ring of integers in a finite extension K / Q p and G = G ( Q p ) be the Q p -points of a Q p -split reductive group G defined over Z p with connected centre and split Borel B = TN . We show that Breuil’s (Algebra Number Theory 9(10):2241–2291, 2015 ) pseudocompact ( φ , Γ ) -module D ξ ∨ ( π ) attached to a smooth o -torsion representation π of B = B ( Q p ) is isomorphic to the pseudocompact completion of the basechange O E ⊗ Λ ( N 0 ) , ℓ D S V ~ ( π ) to Fontaine’s ring (via a Whittaker functional ℓ : N 0 = N ( Z p ) → Z p ) of the étale hull D S V ~ ( π ) of D S V ( π ) defined by Schneider and Vigneras (Clay Math Proc 13:525–601, 2011 ). Moreover, we construct a G -equivariant map from the Pontryagin dual π ∨ to the global sections Y ( G / B ) of the G -equivariant sheaf Y on G  /  B attached to a noncommutative multivariable version D ξ , ℓ , ∞ ∨ ( π ) of Breuil’s D ξ ∨ ( π ) whenever π comes as the restriction to B of a smooth, admissible representation of G of finite length.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-016-1799-2